第二章分式单元备课
2024八年级数学上册第二章分式与分式方程4分式方程第2课时解分式方程课件鲁教版五四制

A.a=5或a=0
B.a≠0
C.a≠5
D.a≠5且a≠0
2x a
3. 若关于x的分式方程 x 2
1
2 的解为非负数,则a
的取值范围是( C )
A.a≥1
B.a>1
C.a≥1且a≠4
D.a>1且a≠4
a
4.
关于x的分式方程 x 3
A.方程的解是x=a-3
1,下列说法正确的是( B )
B.当a>3时,方程的解是正数
(2)∵原分式方程有增根,∴x(x-1)=0.∴x=0或1.
又∵整式方程(a+2)x=3有根,∴x=1.
∴原分式方程的增根为1.∴(a+2)×1=3.∴a=1.
(3)去分母并整理得:(a+2)x=3.
①当a+2=0时,该整式方程无解,此时a=-2.
②当a+2≠0时,要使原分式方程无解,
则x(x-1)=0,得x=0或1.
是原分式方程的解,此时原分式方程无解.
2ax
例3 已知关于x的方程
a x
2
3 的根是x=1,求a的值.
导引:根据方程的解使方程两边的值相等,可构造关于a
的分式方程,解所得分式方程即可得a的值.
2ax
2
2a
2
, 得
解:把x=1代入方程
,
a x 3
a 1 3
1
解得a= 2
1
2a
2
经检验,a=
是分式方程
的解.
2
a 1 3
1
.
∴a的值为
2
归纳
根据方程的解构造方程,
由于所构造的方程是分式方程,
因此验根的步骤不可缺少.
kx
2k-1
-
八年级数学上册第二章分式与分式方程1认识分式第2课时分式的基本性质pptx课件鲁教版五四制

y
y
错解解析:上述解法出错的原因是把分子、分母首项的
符号当成了分子、分母的符号.
x
正确解析:
x
y
y
x
y
x
y
x
x
y
.
y
归纳
当分式的分子、分母是多项式时,
若分子、分母的首项系数是负数,应先
提取“-”并添加括号,再利用分式的
基本性质化成题目要求的结果;变形时
要注意不要把分子、分母的第一项的符
号误认为是分子、分母的符号.
b
(1)
2x
by
y
2 xy
≠
0 ;
b
解:(1)因为y≠0,所以
2x
ax
(2)因为x≠0,所以
bx
ax
(2)
bx
a
.
b
b y
by
;
2 x y 2 xy
ax x a
.
bx x b
归纳
应用分式的基本性质时,一定要确定分式
在有意义的情况下才能应用.应用时要注
意是否符合两个“同”:一是要同时作
“乘法”或“除法”运算;二是“乘(或除
定义 把分式分子、分母的公因式约去,这种变形叫
分式的约分.
约分的步骤:
(1)约去系数的最大公约数;
(2)约去分子分母相同因式的最低次幂.
特别解读
1. 约分的依据是分式的基本性质,关键是确定分子和
分母的公因式;
2. 约分是针对分式的分子和分母整体进行的,而不是
针对其中的某些项,因此约分前一定要确认分子和
1
D.缩小到原来的
20
5.
x 2- y 2
当x=6,y=-2时,则式子 ( x- y ) 2
八年级数学上册第二章分式与分式方程2分式的乘除法第1课时分式的乘除法pptx课件鲁教版五四制

2.运算法则:
分式的乘除混合运算可以统一为乘法运算.
3.运算顺序:
分式的乘除混合运算顺序与分数的乘除混合运算顺序
相同,即按照从左到右的顺序计算,有括号时先算括
号里面的.
计算:
易错点:做分式乘除混合运算时,未按从左到右的
顺序而致错
错解:
诊断:此题易出现先算乘法再算除法的错误,属于运算顺序
a2-2ab+b2= (a-b)2,
___________________________________________;
(2)第二步使用的运算法则用字母表示为
A C A D
÷ =
_____________________;
B D B C
约分
(3)由第二步到第三步进行了分式的_________;
·
= .
C. NhomakorabeaD.
1.分式的乘除运算法则:
(1)两个分式相乘,把分子相乘的积作为积的分子,把分
母相乘的积作为积的分母.
b d bd
用式子表达为: · = .
a c ac
(2)两个分式相除,把除式的分子和分母颠倒位置后再与
被除式相乘.
b d b c bc
÷ = × = .
猜一猜,
=?与同伴交流.
a c
思考
类比分数的乘 法法则,你能说出分式的乘法法则吗?
两个分式相乘,把分子相乘的积作为积的分子,
把分母相乘的积作为积的分母;用式子表达为:
b d bd
.
· =
a c ac
特别解读
分式乘法运算的基本步骤:
第一步,确定积的符号,写在积中分式的前面;
八年级数学上册第二章分式与分式方程全章热门考点整合应用习题pptx课件鲁教版五四制

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
考点2 一个性质——分式的基本性质
6. [2023·泰安新泰市期末]下列各式从左到右的变形中,正确
的是(
C
)
+
+
A. =
B. =
+
−
C.
=
−
(−)
D.
1
2
3
4
5
6
7
8
18
19
20
−
8. (1)不改变分式的值,使分式
+
的分子与分母的最高次
项的系数是整数,且分子、分母不含公因式;
【解】原式=
1
2
3
4
5
6
7
8
−
+
9
10
.
11
12
13
14
15
16
17
18
19
20
(2)不改变分式的值,使分式
−
+
的分子与分母的最高
=
−
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
【点拨】
−
∵ - =
=3,
∴ y - x =3 xy ,
2024八年级数学上册第二章分式与分式方程1认识分式第1课时认识分式习题课件鲁教版五四制

【点拨】
将 x =3代入各分式,使分式分子为0,分母不为0,
即可得到结果.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
11. [母题·教材P22习题T4]小兰家距学校5 km,她步行的速
度是 v km/h,而骑自行车的速度比步行快10 km/h,则她
骑自行车从家到学校需(
)
B
A. h
符合条件的分式.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
【解】张明摆出的分式不符合条件.理由如下:
当 x =3时,张明摆出的分式的分母为 x2-9=0,此时
分式无意义,
符合条件的分式可以为
1
2
3
4
5
6
7
−
+
8
9
(答案不唯一).
10
11
12
13
14
15
16
17
17. 在一次数学课上,徐老师为同学们出了这样一道题:当
x =- , x =-2, x =0, x =1, x = 时,分别求分
式
−+
的值.
(1)请你完成这道题.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
分式计算复习专题课教案(提高版)

分式计算复习专题课教案(提高版)第一章:分式的概念与基本性质1.1 分式的定义解释分式的含义:分子与分母都为整式,分母不为零的代数表达式。
强调分式中的各个元素:分子、分母、分界线。
1.2 分式的基本性质复习分式的基本性质,如:分式的值不随分子、分母的符号变化而变化。
演示分子与分母乘以(或除以)同一个非零整式,分式的值不变。
第二章:分式的运算2.1 分式的加减法讲解分式加减法的运算规则:通分后分子相加(减),分母保持不变。
举例说明如何进行分式的加减运算,并强调通分的重要性。
2.2 分式的乘除法解释分式乘除法的运算规则:分子与分子相乘,分母与分母相乘。
演示如何进行分式的乘除运算,并提示约分的技巧。
第三章:分式的化简与求值3.1 分式的化简介绍分式化简的常见方法:约分、因式分解。
举例说明如何化简分式,并强调化简的目的:简化表达式,便于计算。
3.2 分式的求值讲解如何求解分式的值:将变量代入分式中,进行计算。
强调求值时需要注意的问题:确保代入的变量值使分母不为零。
第四章:分式的应用4.1 分式在实际问题中的应用介绍分式在实际问题中的应用场景,如:比例计算、分段函数等。
演示如何将实际问题转化为分式问题,并解决。
4.2 分式的综合应用案例分析提供一些综合性的案例,让学生练习分式的应用。
引导学生运用分式的知识解决实际问题,培养其应用能力。
第五章:分式的复习与拓展5.1 分式的复习要点总结分式的概念、运算规则、化简与求值等关键知识点。
强调学生需要掌握的分式计算的基本技能。
5.2 分式的拓展与提高介绍一些分式的拓展知识,如:分式的极限、分式函数等。
提供一些提高性的练习题,激发学生对分式计算的兴趣与深入学习。
第六章:分式的综合题型6.1 分式的混合运算讲解分式的混合运算,包括加减乘除以及括号的运用。
提供混合运算的例题,引导学生逐步解决复杂分式问题。
6.2 分式的复合运算介绍分式的复合运算,如:先乘除后加减、先化简后求值等。
2024八年级数学上册第二章分式与分式方程1认识分式第1课时认识分式课件鲁教版五四制
点拨:
判断一个式子是不是分式要看它的原始状态的
分母中是否含有字母,不能将原式化简、整理后去判断,
1 1
x2
3a
所以 x 是分式, π 不是分式,x y 是含分式的式子,不
n
是分式, 5m 是分式.本题易因对分式的定义理解不透而将
原始式子先化简从而错判,或对特殊常数认识不清造成误
判,或易混淆含分式的式子与分式的区别而错判.
知识是力量,
梦想是翅膀。
b
和
,
a x 它们有什么共同特征?它们与整式有什么不同?
相同点
都具有分数的形式
不同点 (观察分母)分母中有字母
定义 一般地,如果A,B表示两个整式,并且B中
A
A
含有字母,那么式子 B 叫做分式. 分式
B
中,A叫做分子,B叫做分母.
特别解读
1. 分式可看成是两个整式的商,它的分子是被
除式,分母是除式,分数线相当于除号,分
是分式,分母中不含有字母的式子是整式.
2x 2x
分式有 x ,x+y ;
解:
x+2 a+2b
3.
整式有 -3a , 2 ,π+2 ,
2
归纳
判断一个式子是否是分式的方法:
A
首先要具有
的形式,其次A,B
B
是整式,最后看分母是不是含有字母,
分母含有字母是判定分式的关键条件.
1. 下列各式中,是分式的是( C )
式的有
−
,
−
+
.
,是整
练点2 分式有(无)意义的条件
3. [2024·烟台招远市期末]若分式
义,则 x 的取值范围是(
分式单元教学计划
分式单元教学计划一、教学目标本次教学旨在使学生掌握分式的基本概念、运算规则以及应用技巧,培养学生运用分式解决实际问题的能力。
二、教学内容及教学步骤1. 分式的引入通过引入实际生活中的例子,如人与食物的比例、时间的分配等,初步引入分式的概念,并与学生进行互动讨论。
2. 分式的基本概念a) 分式的定义与表达方式通过示例引导学生理解分子、分母的含义,并解释分式的表达方式如 a/b、$\frac{a}{b}$ 等。
b) 分式与整数的关系引导学生分辨分式和整数的区别,理解分式可以作为整数的扩展表达方式。
3. 分式的化简与约分a) 分式的化简介绍分式的化简原则,如约去公因式、分子、分母同除等方法,通过例题演示,引导学生掌握化简的步骤。
b) 分式的约分引导学生理解约分的概念,通过实例让学生发现约去分子和分母公共因子可以简化分数。
4. 分式的加减运算a) 同分母分式的加减引导学生通过寻找分母的公倍数,将同分母的分式化为相同形式,并进行相应运算。
b) 异分母分式的加减介绍通分的概念,通过寻找最小公倍数将异分母分式化为相同形式,再进行加减运算。
5. 分式的乘除运算a) 分式的乘法讲解分式的乘法规则,即将分子相乘作为新的分子,分母相乘作为新的分母,并进行化简。
b) 分式的除法分式的除法可转化为乘法,即将除数倒置后进行乘法运算。
6. 分式的应用a) 分式在长方形面积计算中的应用通过实例分析,引导学生理解分式在长方形面积计算中的应用,激发学生应用分式解决实际问题的能力。
b) 分式在物品分配中的应用使用故事情景,引导学生运用分式解决物品分配问题,培养学生的问题解决能力。
三、教学方法与手段1. 情境导入法利用生活中的实例引导学生理解分式的概念和应用场景,让学生主动参与讨论,激发学习兴趣。
2. 归纳演绎法通过例题引导学生从具体实例中总结出分式的基本概念、化简规则以及运算规则,培养学生的逻辑思维能力。
3. 组织合作学习在教学过程中,鼓励学生分组合作,共同解决问题,提高学生的合作与交流能力。
鲁教版(五四制)数学八年级上册第二章《分式与分式方程》复习课件
2
x 16
4 x
4 x
2
2
(3 x )
4 x
( x 2)
( x 4)( x 4) x 3 ( 2 x )( 2 x )
2
( x 3)( x 2)
( x 4)( x 2)
2
x2 x 6
2
x 2x 8
例4.计算:
x y
x 3 x 3x x
的值.
x
x6
1
解:
2
x 3 x 3x x
x2
x6
x3
x ( x 3) x ( x 3) x ( x 3)
x2 9
( x 3)( x 3)
x3
x ( x 3)
x ( x 3)
x
200 3 203
当x=200时,原式=
2
)
(
)
1
,
2. (
2
2
2
a b a 2ab b
a b a b
2
其中 a , b 3
3
5. 求值
+
(1) 3
, 其中 = 5,
2
2
+ 2 +
7
= ;
2
1 1
5 + − 5
(2) − = 3, 求
的值;
− −
+ +
(3) = = , 求 2
的值;
2
2
第二章分式复习 课件1(湘教版八年级下)
(
)
,
乘法分配律 可简化运算
x 1 2x 解: 原式 ( 2 ) ( x 2 1) x 1 x 1 x 1 2x ( x 1)(x 1) 2 ( x 2 1) x 1 x 1 ( x 1) 2 2 x x2 1
要使原式有意义 , 只需( x 1) 0, ( x 1) 0;
设作程 工量问 作 题 总工基 量作本 为效公 单率式 位 : 一工 。作 时 间 = ×
2 26。(本小题5分)已知 是一元二次方程 的实数根,求代数式 x 3 ( x 2
x
x 3x 1 0
5 ) x2
的值。
3x 2 6 x
解:
x 2 3 x 1 0, x 2 3 x 1, x ( x 3) 1 ;
解: 设四季豆原来每斤 x元, 则现在每斤2 x元。 依题意可得: 60 60 50 x 2x
解之得: x 0.6
解应用题的步 骤:一审二设 三列四解五答
检验: 当x 0.6时, 原方程分母都不等于 0, 故,x 0.6是原方程的一个根 。
答: 原来四季豆每斤 0.6元。
25。(本小题5分)有一项工程,如果甲队单独做,正好在 规定日期完工;如果乙队单独做,则比规定日期要多3天才 能完成,现在甲、乙两队合做2天后,再由乙队单独做,正 好在规定日期完工,问规定日期是多少天? 常工工
分式B检测试卷讲评 (二)解答题部分
21。计算:(每小题4分) 2 2 4 x 4 xy y (1) (4 x 2 y 2 ); 2x y
(2) x 2 x 2 ;
x2
x2
( 2 x) 2 2 ( 2 x) y y 2 1 解: 原式 2 2 2x y ( 2 x) y (2 x y ) 2 1 2 x y (2 x y)(2 x y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章分式与分式方程单元备课
一.教学目标
1.知识与技能目标
(1)了解分式的概念,明确分式与整式的区别
(2)熟练掌握分式的基本性质,会化简分式
(3)会进行分式的约分、通分和加、减、乘、除四则运算。
(4)了解分式方程的概念,会解可化为一元一次方程的分式方程
(5)能解决一些简单的与分式、分式方程有关的实际问题
(6)能够根据具体问题中的数量关系列出方程,会检验分式方程的根. 2.过程与方法目标
(1)经历用字母表示现实情境中数量关系(分式、分式方程)的过程,了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号感。
(2)经历观察、归纳、类比、猜想获得分式基本性质、分式加、减、乘、除运算法则的过程,培养学生的推理能力与代数恒等变形能力。
(3)经历“实际问题---分式方程模型----求解---解释解的合理性”的过程,发展分析问题、解决问题的能力,增强应用意识。
(4)经历从分数、整式到分式的学习过程以及从分数的加减法的探索过程,体会类比和转换的思想获取归纳、分析和总结问题的能力。
3 .情感态度与价值观目标
(1)通过学习,获得学习代数知识的常用方法,感受学习代数的价值. (2)通过分组讨论和合作交流,体会与他人合作的重要性
(3)学生通过讨论,情绪上互相感染、激励,能虚心听取他人的见解和大胆发表自己的意见,从而达到主动西,勇于探索,合作交流的目的。
二.
本
三教学重难点
重点:(1)了解分式的概念,明确分式与整式的区别
(2)熟练掌握分式的基本性质,会化简分式
(3)会进行分式的约分、通分和加、减、乘、除四则运算。
(4)了解分式方程的概念,会解可化为一元一次方程的分式方程
难点:(1)能解决一些简单的与分式、分式方程有关的实际问题
(2)能够根据具体问题中的数量关系列出方程,会检验分式方程的根. 四.课时安排
第一节认识分式2课时
第二节分式的乘除法2课时
第三节分式的加减法3课时
第七节分式方程4课时
回顾与思考1课时
合计15课时。