高一数学上册课时练习题33
高一数学上学期第一次质量检测试题及答案(新人教A版 第33套)

安徽省毫州市涡阳四中2013-2014学年高一数学上学期第一次质量检测试题新人教A 版2013年10月本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.注意事项:将试题答案写在答题卷上,在本试卷上作答无效.........。
第Ⅰ卷(选择题 共50分)选择题:本大题共10小题,每小题5分共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U ={1,3, 5,7,9},A={1,5,7},则U C A = ( )A .{1,3}B .{3, 7, 9}C .{3, 5,9}D .{3,9}2.已知M ={x |y =x 2+1},N ={y |y =x 2+1},则)(N C M R ⋂= ( ) A .Φ B .M C .)1,(-∞ D .R3.函数xx x x f +-+=1)1()(0的定义域为 ( ) A.{}1|-≤x x B.{}1|-≥x xC. {}0,1|≠-≥x x x 且D.{}0,1|≠->x x x 且4. 设x x f 2:→是集合M 到集合N 的映射, 若N={1,2}, 则M 不可能是 ( ) A. {-1} B. }2,2{- C. }2,2,1{ D. }2,1,1,2{--5. 定义在R 上的函数 ()x f 满足()x f =21,12,1x x x x⎧+≤⎪⎨>⎪⎩则))3((f f 的值为 ( ) A. 139 B. 3 C. 23 D. 156.下列函数中, 既是奇函数又是增函数的为 ( ) A. x x y = B. x y 3-= C. xy 1= D. 1+=x y 7. 已知函数()2132f x x +=+,则()1f 的值等于 ( )A .5B .11C .2D .1-8.若函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则实数a 的取值范围( )A.3-≤aB. 3-≥aC. 5≤aD. 5≥a已知1)(35++=bx ax x f 且,7)5(=f 则)5(-f 的值是 ( )A. 7-B. 5-C.5D.710. 偶函数)(x f 与奇函数)(x g 的定义域均为[]4,4-,)(x f 在[]0,4-,)(x g 在[]4,0上的图象如图,则不等式0)()(<⋅x g x f 的解集为( )A. []4,2B. (2,0)(2,4)- C. (4,2)(2,4)-- D. (2,0)(0,2)-第Ⅱ卷(非选择题 共100分)二.填空题:共5小题,每小题5分,共25分.将答案填写在题中的横线上.11. 若210,5100==ba ,则b a +2等于 ;12.已知),(y x 在映射f 下的象为),3(y x x -,则)2,3(在f 下的原象为 ;13. 函数322-+=x x y 在区间[-3,0]上的值域为 ;14. 已知函数)(x f y =为奇函数,且当0>x 时32)(2+-=x x x f ,则当0<x 时,)(x f的解析式为 ;15. 已知函数,3)(,4)(2x x g x x f =-=定义{})(),(m in )(x g x f x F =为)(),(x g x f 中较小者,则)(x F 的最大值为 .三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程及演算步骤。
高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。
1.3.3 函数的性质习题课(课时练习)-2016-2017学年高一数学上册(必修1)(原卷版)

必修1 1.3.3 函数的性质习题课 (练习卷)
一、选择题
1.函数f (x )=x 3+x 的图象关于( )
A .y 轴对称
B .直线y =-x 对称
C .原点对称
D .直线y =x 对称
2.下列函数中,在(0,2)上为增函数的是( )
A .y =-3x +2
B .y =3x
C .y =x 2-4x +5
D .y =3x 2+8x -10
3.设f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x +b ,则f (-1)等于( )
A .0
B .2
C .-2
D .1
4.函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的取值范围是(
) A .a ≤2 B .a ≥-2 C .-2≤a ≤2 D .a ≤-2或a ≥2
二、填空题:
5.奇函数f (x )在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,
则2f (-6)+f (-3)=________.
6.已知偶函数f (x )的定义域为[-5,5],且在区间[0,5]上的图象如图所示,则f (x )≥0的x
的取值范围是________.
7.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.
三、解答题:
8.已知函数f (x )=x 2+a x (x ≠0,常数a ∈R ).
(1)讨论函数f (x )的奇偶性,并说明理由;
(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围.。
2021-2022学年新人教A版高一数学课时同步练习题:函数的增长率【含解析】

2021-2022学年新人教A版高一数学课时同步练习题:函数的增长率【含解析】一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N*),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x【答案】D【解析】经过1年,y=a(1+5%),经过2年,y=a(1+5%)2,…,经过x年,y=a(1+5%)x. 2.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y(只)与时间x(年)近似满足关系式:y=a log3(x +2),观测发现2018年冬(作为第1年)有越冬白鹤3 000只,估计到2024年冬越冬白鹤有() A.4 000只B.5 000只C.6 000只D.7 000只【答案】C【解析】当x=1时,由3 000=a log3(1+2)得a=3 000,所以到2024年冬,即第7年,y=3 000×log3(7+2)=6 000.故选C.3.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I与电线半径r 的三次方成正比,若已知电流通过半径为4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为()A.60安B.240安C.75安D.135安【答案】D【解析】由已知,设比例常数为k,则I=k·r3.由题意,当r =4时,I =320,故有320=k ×43,解得k =5,所以I =5r 3. 故当r =3时,I =5×33=135(安).故选D.4.(多选)如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法正确的是( ) A .浮萍每月的增长率为1B .第5个月时,浮萍面积就会超过30 m 2C .浮萍每月增加的面积都相等D .若浮萍蔓延到2 m 2,3m 2,6 m 2所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3 【答案】ABD【解析】图象过(1,2)点,∴2=a 1,即a =2,∴y =2t .∵12)12(22221=-=-+tt t t t ,∴每月的增长率为1,A 正确. 当t =5时,y =25=32>30,∴B 正确.∵第二个月比第一个月增加y 2-y 1=22-2=2(m 2),第三个月比第二个月增加y 3-y 2=23-22=4(m 2)≠y 2-y 1,∴C 不正确. ∵2=12t,3=22t,6=32t, ∴t 1=log 22,t 2=log 23,t 3=log 26,∴t 1+t 2=log 22+log 23=log 26=t 3,D 正确.故选A 、B 、D.5.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝()dB ,对于一个强度为I 的声波,其音量的大小η可由如下公式计算: 010lgII η=⋅(其中0I 是人耳能听到的声音的最低声波强度),设170dB η=的声音强度为1I ,260dB η=的声音强度为2I ,则1I 是2I 的( )A .76倍 B .10倍C .7610倍D .7ln 6倍【答案】B【解析】因为010lgII η=⋅,代入170dB η=,260dB η=, 得10207010lg 6010lg I I I I ⎧=⋅⎪⎪⎨⎪=⋅⎪⎩,两式相减,得12001010lg lg I I I I ⎛⎫=⋅- ⎪⎝⎭得到12lg 1I I =,即1210I I =,故选:B.6.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt.已知新丸经过50天后,体积变为94a .若一个新丸体积变为278a ,则需经过的天数为( )A .125B .100C .75D .50 【答案】C【解析】由已知,得94a =a ·e -50k ,∴e -k =501)94(.设经过t 1天后,一个新丸体积变为278a , 则278a =a ·e -kt 1, ∴278=(e -k )t 1=501)94(t,∴23501=t ,t 1=75. 7.把物体放在空气中冷却,如果物体原来的温度是T 1(℃),空气的温度是T 0(℃),经过t 分钟后物体的温度T (℃)可由公式T =T 0+(T 1-T 0)e-0.25t求得.把温度是90 ℃的物体,放在10 ℃的空气中冷却t 分钟后,物体的温度是50 ℃,那么t 的值约等于(参考数据:ln 3≈1.099,ln 2≈0.693)( ) A .1.78 B .2.77 C .2.89 D .4.40 【答案】B【解析】由题意可知50=10+(90-10)·e -0.25t,整理得e-0.25t=21,即-0.25t =ln 21=-ln 2=-0.693,解得t ≈2.77.二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)8.某市的房价(均价)经过6年时间从1 200元/m 2增加到了4 800元/m 2,则这6年间平均每年的增长率是________. 【答案】32-1【解析】设6年间平均年增长率为x ,则有1 200(1+x )6=4 800,解得 x =32-1.9.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料的质量M kg ,火箭(除燃料外)的质量m kg 的函数关系式是v =2 000·ln )1(mM+.当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 【答案】e 6-1【解析】当v =12 000 m/s 时,2 000·ln )1(m M +=12 000,所以ln )1(m M +=6,所以mM =e 6-1. 10.某种细菌经30分钟数量变为原来的2倍,且该种细菌的繁殖规律为y =e kt ,其中k 为常数,t 表示时间(单位:小时),y 表示繁殖后细菌总个数,则k =________,经过5小时,1个细菌通过繁殖个数变为________. 【答案】2ln 2 1 024【解析】由题意知,当t =21时,y =2,即2=21e k ,∴k =2ln 2,∴y =e 2t ln 2. 当t =5时,y =e 2×5×ln 2=210=1 024.即经过5小时,1个细菌通过繁殖个数变为1 024.11.放射性物质衰变过程中其剩余质量随时间按指数函数关系变化.常把它的剩余质量变为原来的一半所经历的时间称为它的半衰期,记为21T 现测得某种放射性元素的剩余质量A 随时间t 变化的6次数据如下:A (t )=________.【答案】4 320·2-4t(t ≥0) 【解析】从题表中数据易知半衰期为4个单位时间,由初始质量为A 0=320,则经过时间t 的剩余质量为A (t )=A 0·21)21(T t =320·2-4t(t ≥0). 三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)12.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超过A 万元,则超过部分按log 5(2A +1)进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元). (1)写出奖金y 关于销售利润x 的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元? 【解析】(1)由题意知当0≤x ≤8时,y =0.15x ;当x >8时,y =8×0.15+log 5(2x -15)=1.2+log 5(2x -15),所以⎩⎨⎧>-+≤≤=8).152(log 2.180,15.05x x x x y (2)当0≤x ≤8时,y max =0.15×8=1.2<3.2,故小江销售利润x >8. 由题意知1.2+log 5(2x -15)=3.2,解得x =20. 所以小江的销售利润是20万元.13.一片森林原来面积为a ,计划每年砍伐一些树,使森林面积每年比上一年减少p %,10年后森林面积变为3a a . (1)求p %的值;(2)到今年为止该森林已砍伐了多少年?【解析】(1)设砍伐n 年后的森林面积为f (n ),则f (n )=a (1﹣P %)n . 由题意可得f (10)3a =,即a (1﹣P %)103a=,解得:p %=1(2)由(1)可得f (n )=a •(n =a •1013n (),令f (n )=可得,110211 33n==()(), ∴1102n =,即n =5. 故到今年为止,该森林已砍伐5年14.近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L )与过滤时间t (单位:h )间的关系为()0ktP t Pe -=(0P ,k 均为非零常数,e 为自然对数的底数),其中0P 为0t =时的污染物数量.若经过5h 过滤后还剩余90%的污染物.(1)求常数k 的值;(2)试计算污染物减少到40%至少需要多长时间.(精确到1h ,参考数据:ln 0.2 1.61≈-,ln 0.3 1.20≈-,ln 0.40.92≈-,ln 0.50.69≈-,ln 0.90.11≈-)【解析】(1)由已知得,当0t =时,0P P =;当5t =时,090%P P =.于是有50090%kP Pe -=,解得1ln 0.95k =-(或0.022k ≈).(2)由(1)知1ln0.950t P P e⎛⎫⎪⎝⎭=,当040%P P =时,有1ln0.95000.4t P P e ⎛⎫⎪⎝⎭=,解得()ln 0.40.92 4.6042110.11ln 0.90.1155t -=≈=≈⨯-. 故污染物减少到40%至少需要42h.15.某学习小组在暑期社会实践活动中,通过对某商品一种小物品的销售情况的调查发现:该小物品在过去的一个月内(以30天计)每件的销售价格()P x (单位:元)与时间x (单位:天)的函数关系近似满足()1kP x x=+(k 为正常数),日销售量()Q x (单位:件)与时间x (单位:天)的部分数据如下表所示:已知第10天的日销售收入为121元. (1)求k 的值;(2)给出以下四种函数模型:①()Q x ax b =+,②()|25|Q x a x b =-+,③()x Q x a b =⋅,④()log b Q x a x =⋅.请你根据上表中的数据,从中选择你认为最合适的一种函数来描述日销售量()Q x (单位:件)与时间x (单位:天)的变化关系,并求出该函数的解析式. (3)求该小物品的日销售收入()f x (单位:元)的最小值.【解析】(1)依题意知第10天的日销售收入为(10)(10)111012110k P Q ⎛⎫⋅=+⨯= ⎪⎝⎭,得1k =; (2)由表中的数据知,当时间变化时,日销售量有增有减并不单调,故只能选②,()|25|Q x a x b ∴=-+,从表中任意取两组值代入可得,30251202025120a b a b ⎧-+=⎪⎨-+=⎪⎩,解得1125a b =-⎧⎨=⎩,()*()125|25|130,Q x x x x N ∴=--≤≤∈;(3)由(2)知))**100(125,()150(2530,x x x N Q x x x x N⎧+≤<∈⎪=⎨-≤≤∈⎪⎩,所以))**100101(125,()()()150149(2530,x x x N xf x P x Q x x x x N x⎧++≤<∈⎪⎪=⋅=⎨⎪-+≤≤∈⎪⎩, 当125x ≤<时,100y x x=+在[]1,10上是减函数,在[10,25)是增函数, 所以min ()(10)121f x f ==.当2530x ≤≤时,150y x x=-为减函数, 所以min ()(30)124f x f ==.综上所述,当10x =时,()f x 取得最小值,min ()121=f x。
【高一】高一数学上册第一章课堂练习题(有答案)

【高一】高一数学上册第一章课堂练习题(有答案)第ⅰ卷(选择题共60分)一、多项选择题(本主题共有12个子题,每个子题得5分,共60分。
在每个子题给出的四个选项中,符号题只需要一个选项。
)1.已知集合a={0,1,2,3,4,5},b={1,3,6,9},c={3,7,8},则(a∩b)∪c等于( )a、 {0,1,2,6,8}b、 {3,7,8}c.{1,3,7,8}d.{1,3,6,7,8}[答:]C[解析] a∩b={1,3},(a∩b)∪c={1,3,7,8},故选c.2.(09?陕西文本)定义在R上的偶数函数f(x)满足:对于任何x1,X2∈ [0, + ∞) (x1)≠ x2),如果f(x2)-f(x1)x2-x1<0,那么()a.f(3)c、 f(-2)[答案] a[分析]如果x2-X1>0,则f(x2)-f(X1)<0,即f(x2)‡f(x)是[0,+∞),∵3>2>1,∴f(3)其中f(x)是偶数函数,f(-2)=f(2),∴f(3)3.表中显示了F(x)和G(x)的相应值x01-1f(x)10-1x01-1g(x)-101则f(g(1))的值为( )a、-1b.0c.1d.不存在[答:]C[解析] ∵g(1)=0,f(0)=1,∴f(g(1))=1.4.如果已知函数f(x+1)=3x+2,则f(x)的解析式为()a.3x+2b.3x+1c、 3x-1d.3x+4[答案] c[分析]设x+1=t,然后x=t-1,∴f(t)=3(t-1)+2=3t-1,∴f(x)=3x-1.5.如果f(x)=2x-1(x≥ 2) -x2+3x(x<2),F(-1)+F(4)的值为()a.-7b.3c、-8d.4[答案] b【分析】f(4)=2×4-1=7,f(-1)=-1)2+3×1=-4,——(4)+f(-1)=3,所以选择B6.f(x)=-x2+mx在(-∞,1]上是增函数,则m的取值范围是( )a、 {2}b.(-∞,2]c.[2,+∞)d.(-∞,1][答:]C[解析] f(x)=-(x-m2)2+m24的增区间为(-∞,m2],由条件知m2≥1,∴m≥2,故选c.7.定义集合a和集合B={XX的运算a*B∈ a、或者X∈ B、 X呢?A.∩ B} ,那么(a*B)*a等于()a.a∩bb.a∪bc、广告[答案] d【分析】a*B的本质是集合a和集合B的组合。
高一数学上册课堂练习题(带答案)

高一数学上册课堂练习题(带答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(09宁夏海南理)已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩NB=( )A.{1,5,7} B.{3,5,7}C.{1,3,9} D.{1,2,3}[答案] A[解析] A∩NB={1,3,5,7,9}∩{1,2,4,5,7,8,10,11,13,14,…}={1,5,7}.2.方程log3x+x=3的解所在区间是( )A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)[答案] C[解析] 令f(x)=log3x+x-3,∵f(2)f(3)logy3,∴B错.③由y=log4u为增函数知log4x14y,排除D.6.已知方程|x|-ax-1=0仅有一个负根,则a的取值范围是( )A.a1 D.a≥1[答案] D[解析] 数形结合判断.7.已知a>0且a≠1,则两函数f(x)=ax和g(x)=loga-1x的图象只可能是( )[答案] C[解析] g(x)=loga-1x=-loga(-x),其图象只能在y轴左侧,排除A、B;由C、D知,g(x)为增函数,∴a>1,∴y=ax为增函数,排除D.∴选C.8.下列各函数中,哪一个与y=x为同一函数( )A.y=x2x B.y=(x)2C.y=log33x D.y=2log2x[答案] C[解析] A∶y=x(x≠0),定义域不同;B∶y=x(x≥0),定义域不同;D∶y=x(x>0)定义域不同,故选C.9.(上海大学附中2009~2021高一期末)下图为两幂函数y=xα和y=xβ的图像,其中α,β∈{-12,12,2,3},则不可能的是( )[答案] B[解析] 图A是y=x2与y=x12;图C是y=x3与y=x-12;图D是y=x2与y=x-12,故选B.10.(2021天津理,8)设函数f(x)=log2x,x>0,log12(-x),xf(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)[答案] C[解析] 解法1:由图象变换知函数f(x)图象如图,且f(-x)=-f(x),即f(x)为奇函数,∴f(a)>f(-a)化为f(a)>0,∴当x∈(-1,0)∪(1,+∞),f(a)>f(-a),故选C.解法2:当a>0时,由f(a)>f(-a)得,log2a>log12a,∴a>1;当af(-a)得,log12(-a)>log2(-a),∴-1f(x)得:2(25+10x)>100(1+5%)x,将已知条件代入验证知x=4,所以在2021年时满足题意.12.(2021山东理,4)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( )A.3 B.1C.-1 D.-3[答案] D[解析] ∵f(x)是奇函数,∴f(0)=0,即0=20+b,∴b=-1,故f(1)=2+2-1=3,∴f(-1)=-f(1)=-3.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把准确答案填在题中横线上)13.化简:(lg2)2+lg2lg5+lg5=________.[答案] 1[解析] (lg2)2+lg2lg5+lg5=lg2(lg2+lg5)+lg5=lg2+lg5=1.14.(09重庆理)若f(x)=12x-1+a是奇函数,则a=________.[答案] 12[解析] ∵f(x)为奇函数,∴f(-1)=-f(1),即12-1-1+a=-12-1-a,∴a=12.15.已知集合A={x|x2-9x+14=0},B={x|ax+2=0}若B A,则实数a的取值集合为________.[答案] {0,-1,-27}[解析] A={2,7},当a=0时,B=满足B A;当a≠0时,B={-2a}由B A知,-2a=2或7,∴a=-1或-27综上可知a的取值集合为{0,-1,-27}.16.已知x23>x35,则x的范围为________.[答案] (-∞,0)∪(1,+∞)[解析] 解法1:y=x23和y=x35定义域都是R,y=x23过一、二象限,y=x35过一、三象限,∴当x∈(-∞,0)时x23>x35恒成立x=0时,显然不成立.当x∈(0,+∞)时,x23>0,x35>0,∴ =x115>1,∴x>1,即x>1时x23>x35∴x的取值范围为(-∞,0)∪(1,+∞).解法2:x0>x35成立;x>0时,将x看作指数函数的底数∵23>35且x23>x35,∴x>1.∴x的取值范围是(-∞,0)∪(1,+∞).[点评] 变量与常量相互转化思想的应用.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)用单调性定义证明函数f(x)=x-2x+1在(-1,+∞)上是增函数.[解析] 证明:设x1>x2>-1,则f(x1)-f(x2)=x1-2x1+1-x2-2x2+1=3(x1-x2)(x1+1)(x2+1)>0∴f(x1)>f(x2)∴f(x)在(-1,+∞)上是增函数.18.(本题满分12分)已知全集R,集合A={x|x2+px+12=0},B={x|x2-5x+q=0},若(RA)∩B={2},求p+q的值.[解析] ∵(RA)∩B={2},∴2∈B,由B={x|x2-5x+q=0}有4-10+q=0,∴q=6,此时B={x|x2-5x+6}={2,3}假设RA中有3,则(RA)∩B={2,3}与(RA)∩B={2}矛盾,∵3∈R又3(RA),∴3∈A,由A={x|x2+px+12=0}有9+3p+12=0,∴p=-7.∴p+q=-1.19.(本题满分12分)设f(x)=4x4x+2,若0<a<1,试求:(1)f(a)+f(1-a)的值;(2)f(11 001)+f(21 001)+f(31 001)+…+f(1 0001 001)的值.[解析] (1)f(a)+f(1-a)=4a4a+2+41-a41-a+2=4a4a+2+44+2×4a=4a+24a+2=1∴f(11001)+f(1 0001001)=f(21001)+f(9991001)=…=f(5001001)+f(5011001)=1.∴原式=500.20.(本题满分12分)若关于x的方程x2+2ax+2-a=0有两个不相等的实根,求分别满足下列条件的a的取值范围.(1)方程两根都小于1;(2)方程一根大于2,另一根小于2.[解析]设f(x)=x2+2ax+2-a(1)∵两根都小于1,∴Δ=4a2-4(2-a)>0-2a0,解得a>1.(2)∵方程一根大于2,一根小于2,∴f(2)<0∴a<-2.21.(本题满分12分)已知函数f(x)=loga(a-ax)(a>1).(1)求函数的定义域和值域;(2)讨论f(x)在其定义域内的单调性;(3)求证函数的图象关于直线y=x对称.[解析] (1)解:由a-ax>0得,ax<a,∵a>1,∴x<1,∴函数的定义域为(-∞,1)∵ax>0且a-ax>0.∴0<a-ax<a.∴loga(a-ax)∈(-∞,1),即函数的值域为(-∞,1).(2)解:u=a-ax在(-∞,1)上递减,∴y=loga(a-ax)在(-∞,1)上递减.(3)证明:令f(x)=y,则y=loga(a-ax),∴ay=a-ax,∴ax=a-ay,∴x=loga(a-ay),即反函数为y=loga(a-ax),∴f(x)=loga(a-ax)的图象关于直线y=x对称.[点评] (1)本题给出了条件a>1,若把这个条件改为a>0且a≠1,就应分a>1与0<a<1实行讨论.请自己在0<a<1的条件下再解答(1)(2)问.(2)第(3)问可在函数f(x)的图象上任取一点,P(x0,y0),证明它关于直线y=x的对称点(y0,x0)也在函数的图象上.∵y0=loga(a-ax0)∴ay0=a-ax0即a-ay0=ax0∴f(y0)=loga(a-ay0)=logaax0=x0∴点(y0,x0)也在函数y=f(x)的图象上.∴函数y=f(x)的图象关于直线y=x对称.22.(本题满分14分)已知函数f(x)=axx2-1的定义域为[-12,12],(a≠0)(1)判断f(x)的奇偶性.(2)讨论f(x)的单调性.(3)求f(x)的值.[解析] (1)∵f(-x)=-axx2-1=-f(x),∴f(x)为奇函数.(2)设-12≤x1<x2≤12,f(x1)-f(x2)=ax1x21-1-ax2x22-1=a(x2-x1)(x1x2+1)(x21-1)(x22-1)若a>0,则因为x21-1<0,x22-1<0,x2-x1>0,x1x2+1>0.∴f(x1)-f(x2)>0∴f(x1)>f(x2)即f(x)在[-12,12]上是减函数若a<0,同理可得,f(x)在[-12,12]上是增函数.(3)当a>0时,由(2)知f(x)的值为f(-12)=23a.当a<0时,由(2)知f(x)的值为f(12)=-23a.。
【高一】高一数学上册课堂练习题(附答案)
【高一】高一数学上册课堂练习题(附答案)2.2.2.1我1.三个数60.7,0.76,log0.76的大小顺序是( )a、 0.76c.log0.76<60.7<0.76d.log0.76<0.76<60.7[答:]d[解析] 60.7>1>0.76>0>log0.76,故选d.2.设置日志(A-1)(2x-1)>日志(A-1)(x-1),然后()a.x>1,a>2b.x>1,a>1c、 x>0,a>2d.x<0,1[答案] a【分析】为了使不等式有意义,我们应该让x>1,并否定C和D当x>1时,2x-1>x-1,因此a-1>1,∴a>2,故选a.3.如果区间(0,1)中y=log(A2-1)x的函数值始终为正,则a的值范围为() a.a>1b.a>2c、 a<2d.1[答案] d[解析]∵ 00,∴0∴1.4.函数y=log2x+的定义域是( )a、(0,+∞)b、(1,+∞)c.(0,1)d.{1}[答:]d[解析] ∴x≥10‡x=1‡定义字段为{1}5.给出函数f(x)=(12)x (当x≥4时)f(x+1)(当x<4时),则f(log23)=( ) a、-238b。
一百一十一c.119d.124[答:]d[解析] ∵3×22<24<3×23,∴2+log23<4<3+log23f(log23)=f(log23+1)=f(log26)=f(log26+1)=f(log212)=f(log212+1)=f(log224)==124,故选d.6.如果集合a={YY=log2x,x>1},B={YY=(12)x,x>1},那么a∪ B=()a.{y00}c.?d.r[答:]B[解析] a={yy=log2x,x>1}={yy>0}b=yy=(12)x,x>1=y0a∪b={yy>0},故选b.7.(2022?湖北,5)函数y=1log0 5(4x-3)的定义字段为()a.34,1b.34,+∞c、(1,+∞)d、34,1∪(1,+∞)[答案] a[parse]log0 5(4x-3)>0=log0。
高一集合练习题(推荐8篇)
高一集合练习题(推荐8篇)高一集合练习题(1)(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
(二)子集,A包含于B,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B。
高一数学充分条件与必要条件练习题
高一数学充分条件与必要条件练习题高一数学充分条件与必要条件练题典例分析题型一:判断充分,必要条件例1:在空间中,“两条直线没有公共点”是“这两条直线平行”的充要条件。
例2:对任意实数a、b、c,在下列命题中,真命题是“ac>bc”是“a>b”的必要条件。
例3:若集合A={x|x^2-5x+4<0},B={x||x-a|<1},则“a∈(2,3)”是“B⊆A”的必要但不充分条件。
例4:若“a≥b⇒c>d”和“a<b⇒e≤f”都是真命题,其逆命题都是假命题,则“c≤d”是“e≤f”的充要条件。
例5:已知a,b,c,d为实数,且c>d。
则“a>b”是“a-c>b-d”的充要条件。
例6.“a=8x”是“对任意的正数x,2x+1/8≥1”的充要条件。
例7:a<0是方程ax^2+2x+1=至少有一个负数根的必要但不充分条件。
例8.“函数f(x)(x∈R)存在反函数”是“函数f(x)在R上为增函数”的充分必要条件。
例9:已知命题p:-4<k<0;命题q:函数y=kx^2-kx-1的值恒为负。
则命题p是命题q成立的充要条件。
例10.“m=1”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要但不充分条件。
例11.“a=1”是“函数f(x)=|x-a|在区间[1,+∞)上为增函数”的充要条件。
⑴x<5是x<10的充分不必要条件;x<10是x<5的必要不充分条件;⑵a=b是直线y=x+2与圆(x-a)²+(y-b)²=2相切的____________;a=b是直线y=x+2与圆(x-a)²+(y-b)²=2相切的必要不充分条件;⑶对于非零向量a,b,“a+b=0”是“a∥b”的____________;a+b=0”是“a∥b”的充分必要条件;⑷“α≠β”是“cosα≠cosβ”的____________;α≠β”是“cosα≠cosβ”的必要不充分条件;⑸“k>3”是“方程(x²/k²)-(y²/(k-3)(k+3))=1表示双曲线”的____________;k>3”是“方程(x²/k²)-(y²/(k-3)(k+3))=1表示双曲线”的充分不必要条件;⑹甲:A,B是互斥事件;乙:A,B是对立事件,那么下列说法正确的是____________。
高中数学人教A版选修1-1课时作业3.3.3 函数的极值与导数 Word版含解析
课时作业一、选择题.函数()=-+取极小值时,的值是( )..,-.-.-解析:′()=-+=-(-)(+),′()的图象如下图.∵在=-的附近左侧′()<,右侧′()>,∴=-时取极小值.答案:. [·陕西高考]设函数()=+,则( ). =为()的极大值点. =为()的极小值点. =为()的极大值点. =为()的极小值点解析:函数()的定义域为(,+∞),′()=-+=,当=时,′()=;当>时,′()>,函数()为增函数;当<<时,′()<,函数()为减函数,所以=为函数()的极小值点.答案:. 设∈,若函数=+,∈有大于零的极值点,则( ). >-. <-. <-. >-解析:′=+,由+=得=-,=(-).可知=(-)为函数的极值点.∴(-)>,即(-)>.∴<-.答案:. 已知函数()=++的图象如图所示,则+等于( ). .. .解析:由图可知()=,()=,∴(\\(++=,++=,))解得(\\(=-,=.))∴()=-+,∴′()=-+.由图可知,为()的极值点,∴+=,=.∴+=(+)-=-=.答案:二、填空题.若函数=-++的极大值等于,则实数等于.解析:′=-+,由′=,得=或=,容易得出当=时函数取得极大值,所以-+×+=,解得=-.答案:-.已知实数,,,成等比数列,且曲线=-的极大值点坐标为(,),则=.解析:∵′=-,令′=得=±,且当>时,′<,当-≤≤时,′≥,当<-时,′<,故=为=-的极大值点,即=.又=-=×-=,∴=.又∵,,,成等比数列,∴==.答案:.已知函数=′()的图象如下图所示(其中′()是函数()的导函数),给出以下说法:①函数()在区间(,+∞)上是增函数;②函数()在区间(-)上单调递增;③函数()在=-处取得极大值;④函数()在=处取得极小值.其中正确的说法是.解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(二十五) 几类不同增长的函数模型
一、选择题
1.Ma,Mb,Mc,Md四个物体沿同一方向同时开始运动,假设
其经过的路程与时间x的函数关系式分别是f1(x)=x2,f2(x)=x 12 ,f3(x)
=log2x,f4(x)=2x,如果运动的时间足够长,则运动在最前面的物体
一定是( )
A.Ma B.Mb
C.Mc D.Md
答案:D 解析:在(0,+∞)上,f1(x)=x2,f2(x)=x 12 ,f3(x)=
log2x,f4(x)=2x都是增函数,但是随着x的增大,函数f4(x)=2x的增
长速度最快.
2.某公司市场营销部的个人月收入与其每月的销售量成一次函
数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销
售时的收入是( )
A.310元 B.300元
C.290元 D.280元
答案:B 解析:由射线经过点(1,800),(2,1 300),得其解析式
为y=500x+300(x≥0),∴当x=0时,y=300.
3.如图所示,向放在水槽底部的烧杯注水(流量一定),注满烧
杯后,继续注水,直至注满水槽,水槽中水面上升高度h与注水时间
t之间的函数关系大致是下列图象中的( )
答案:B 解析:开始一段时间,水槽底部没有水,烧杯满了之
后,水槽中水面上升先快后慢,与B图象相吻合.
4.若x∈(0,1),则下列结论正确的是( )
A.2x>x 12 >lg x B.2x>lg x>x 12
C.x 12 >2x>lg x D.lg x>x 12 >2x
答案:A 解析:如图所示,由图象可知当x∈(0,1)时,2x>x 12 >lg
x.
5. 如图,△ABC为等腰直角三角形,直线l与AB相交且l⊥AB,
直线l截这个三角形所得的位于直线右方的图形面积为y,点A到直
线l的距离为x,则y=f(x)的图象大致为四个选项中的( )
答案:C 解析:设AB=a,则y=12a2-12x2=-12x2+12a2,其图
象为抛物线的一段,开口向下,顶点在y轴上方,故选C.
二、填空题
6.函数y=2x与函数y=x2的图象共有________个交点.
答案:3 解析:如图所示,函数y=2x与函数y=x2的图象共有
3个交点.
7.某种动物繁殖数量y(只)与时间x(年)的关系式为y=alog2(x+
1).设这种动物第一年有100只,则到第7年这种动物发展到________
只.
答案:300 解析:把x=1,y=100代入y=alog2(x+1),得a
=100,
故函数关系式为y=100log2(x+1),
∴当x=7时,y=100log2(7+1)=300.
所以到第7年这种动物发展到300只.
8.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然
后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机
后经过________分钟,该病毒占据64MB内存(1MB=210KB).
答案:45 解析:设经过n个3分钟后,该病毒占据64MB内存,
则2×2n=64×210=216,解得n=15,故时间为15×3=45(分钟).
9.为了保证信息安全,传输必须使用加密方式,有一种方式其
加密解密原理如下:明文――→加密密文――→发送密文――→解密明文,已知加密
为y=ax-2(x为明文,y为密文),如果明文“3”通过加密后得到密文
为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为
“14”,则原发的明文是________.
答案:4 解析:依题意得,y=ax-2中,当x=3时,y=6,故
6=a3-2,解得a=2.所以加密为y=2x-2,因此,当y=14时,由
14=2x-2,解得x=4.
10.在某种金属材料的耐高温实验中,温度随着时间变化的情况
如图所示.现给出下列说法:
①前5 min温度增加的速度越来越快;
②前5 min温度增加的速度越来越慢;
③5 min以后温度保持匀速增加;
④5 min以后温度保持不变.
其中正确的说法是________.(填序号)
答案:②④ 解析:因为温度y关于时间t的图象是先凸后平,
即前5 min每当t增加一个单位增量Δt,则y相应的增量Δy越来越
小,而5 min后y关于t的增量保持为0,则②④正确.
三、解答题
11.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者
在[0,+∞)上的大小关系.
解:函数f(x)与g(x)的图象如图.
根据图象易得:
当0≤x<4时,f(x)>g(x);
当x=4时,f(x)=g(x);
当x>4时,f(x)
增加20%,如果不砍伐,从第六年到第十年,年增长10%,现有两
种砍伐方案:
甲方案:栽植五年后不砍伐,等到十年后砍伐.
乙方案:栽植五年后砍伐重栽,再过五年再砍伐一次.
请计算后回答:十年内哪一个方案可以得到较多的木材?
解:设树林中这种数木的最初栽植量为a(a>0),甲方案在10年
后树木产量为y1=a(1+20%)5(1+10%)5
=a(1.2×1.1)5≈4a.
乙方案在10年后树木产量为
y2=2a(1+20%)5=2a×1.25≈4.98a.
y1-y2=4a-4.98a<0,因此,乙方案能获得更多的木材(不考虑
最初的树苗成本,只按成材的树木计算).
13.某地区今年1月,2月,3月患某种传染病的人数分别为
52,54,58.为了预测以后各月的患病人数,甲选择了模型y=ax2+bx+
c,乙选择了模型y=p·qx+r,其中y为患病人数,x为月份数,a,b,
c,p,q,r都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,
你认为谁选择的模型较好?
解:依题意,得 a·12+b·1+c=52,a·22+b·2+c=54,a·32+b·3+c=58,
即 a+b+c=52,4a+2b+c=54,9a+3b+c=58,解得 a=1,b=-1,c=52,
∴甲:y1=x2-x+52;
又 p·q1+r=52,①p·q2+r=54,②p·q3+r=58,③
②-①,得p·q2-p·q1=2,④
③-②,得p·q3-p·q2=4,⑤
⑤÷④,得q=2,
将q=2代入④式,得p=1,
将q=2,p=1代入①式,得r=50,
∴乙:y2=2x+50.
计算当x=4时,y1=64,y2=66;
当x=5时,y1=72,y2=82;
当x=6时,y1=82,y2=114.
可见,乙选择的模型较好.
尖子生题库
14.某公司推出了一种高效环保型洗涤用品,年初上市后,公司
经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公
司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月
的利润总和S与t之间的关系).
根据图象提供的信息解答下列问题:
(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之
间的函数关系式;
(2)求截止到第几个月末公司累积利润可达到30万元;
(3)求第八个月公司所获利润是多少万元.
解:(1)由二次函数图象,设S与t的函数关系式为S=at2+bt+
c.
由题意,得 a+b+c=-1.5,4a+2b+c=-2,25a+5b+c=2.5,16a+4b+c=0,c=0.
解得a=12,b=-2,c=0,
∴所求函数关系式为S=12t2-2t.
(2)把S=30代入函数关系式,得30=12t2-2t,
解得t1=10,t2=-6(舍去),
所以截止到第10个月末公司累积利润可达到30万元.
(3)把t=7代入函数关系式,得
S=12×72-2×7=10.5(万元),
把t=8代入,得S=12×82-2×8=16(万元),
则第八个月获得的利润为16-10.5=5.5(万元),
∴第八个月公司所获利润是5.5万元.