高三人教A版(文科数学) 概率与统计的综合应用 单元测试(含答案)

合集下载

(常考题)人教版高中数学必修第二册第四单元《统计》测试卷(包含答案解析)

(常考题)人教版高中数学必修第二册第四单元《统计》测试卷(包含答案解析)
附:线性回归方程 中系数计算公式分别为: , ,其中 、 为样本均值.
20.孝感市旅游局为了了解双峰山景点在大众中的熟知度,从年龄在15~65岁的人群中随机抽取n人进行问卷调查,把这n人按年龄分成5组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的样本的频率分布直方图如右:
调查问题是“双峰山国家森林公园是几A级旅游景点?”每组中回答正确的人数及回答正确的人数占本组的频率的统计结果如下表.
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第1组
[15,25)
5
0.5
第2组
[25,35)
18
x
第3组
[35,45)
y
0.9
第4组
[45,55)
9
a
第5组
[55,65]
7
b
(1)分别求出n,x,y的值;
“梅实初黄暮雨深”.请用样本平均数估计 镇明年梅雨季节的降雨量;
“江南梅雨无限愁”. 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量( /亩)与降雨量的发生频数(年)如 列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?
①一组数据的标准差越大,则说明这组数据越集中;
②曲线 与曲线 的焦距相等;
③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;
④已知椭圆 ,过点 作直线,当直线斜率为 时,M刚好是直线被椭圆截得的弦AB的中点.
A.1B.2C.3D.4

高三人教A版(文科数学) 推理与证明 单元测试(含答案)

高三人教A版(文科数学)    推理与证明   单元测试(含答案)

2019届人教A 版(文科数学) 推理与证明 单元测试1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63D .128考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 B解析 5=22+1,9=23+1,17=24+1,33=25+1, 归纳可得:x =26+1=65.2.在平面直角坐标系中,方程x a +yb =1表示x ,y 轴上的截距分别为a ,b 的直线,类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为( ) A.x a +y b +zc=1 B.x ab +y bc +zca =1 C.xy ab +yz bc +zxca=1 D .ax +by +cz =1 考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 A解析 ∵在平面直角坐标系中,方程x a +yb =1表示的图形是一条直线,具有特定性质:“在x 轴,y 轴上的截距分别为a ,b ”.类比到空间直角坐标系中,在x ,y ,z 轴上截距分别为a ,b ,c (abc ≠0)的平面方程为x a +y b +zc =1.故选A.3.若a >0,b >0,则有( ) A.b 2a >2b -a B.b 2a <2b -a C.b 2a ≥2b -a D.b 2a ≤2b -a 考点 综合法及应用题点 利用综合法解决不等式问题 答案 C解析 因为b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,所以b 2a≥2b -a .4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 考点 反证法及应用 题点 如何正确进行反设 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故选A. 5.用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n ∈N *). 考点 用数学归纳法证明等式 题点 利用数学归纳法证明等式解 (1)当n =1时,左边=12×1×(2×1+2)=18,右边=14×(1+1)=18.左边=右边,所以等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立, 即有12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1),则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2] =k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2) =k +14(k +2)=k +14[(k +1)+1]. 所以当n =k +1时,等式也成立,由(1)(2)可知,对于一切n ∈N *,等式都成立.1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)当n =n 0时,结论成立.第二步(归纳递推)假设当n =k 时,结论成立,推得当n =k +1时,结论也成立.数学归纳法是在可靠的基础上,利用命题自身具有的传递性,运用有限的步骤(两步)证明出无限的命题成立.一、选择题1.证明命题:“f (x )=e x +1e x 在(0,+∞)上是增函数”.现给出的证法如下:因为f (x )=e x+1e x ,所以f ′(x )=e x -1e x .因为x >0,所以e x >1,0<1e x <1.所以e x -1e x >0,即f ′(x )>0.所以f (x )在(0,+∞)上是增函数,使用的证明方法是( ) A .综合法 B .分析法 C .反证法 D .以上都不是考点 综合法及应用题点 利用综合法解决函数问题 答案 A解析 这是从已知条件出发利用已知的定理证得结论的,是综合法,故选A. 2.若a <b <0,则下列不等式中成立的是( ) A.1a <1b B .a +1b >b +1aC .b +1a >a +1bD.b a <b +1a +1考点 分析法及应用 题点 分析法解决不等式问题 答案 C解析取a=-2,b=-1,验证可知C正确.3.我们把1,4,9,16,25,…这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是()A.n(n-1) B.n(n+1)C.(n+1)2D.n2考点归纳推理的应用题点归纳推理在图形中的应用答案 D解析由题意可知第n个正方形点数为n2.4.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为()A.25 B.7C.6 D.8考点归纳推理的应用题点归纳推理在数对(组)中的应用答案 B解析由所给的数列规律知,第25项为7.5.已知{b n}为等比数列,b5=2,则b1b2b3…b9=29.若{a n}为等差数列,a5=2,则{a n}的类似结论为()A.a1a2a3…a9=29B.a1+a2+…+a9=29C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9考点类比推理的应用题点等差数列与等比数列之间的类比答案 D解析由等差数列的性质a1+a9=a2+a8=…=2a5可知D正确.6.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取()A.2 B.3C.5 D.6考点数学归纳法定义及原理题点数学归纳法第一步:归纳奠基答案 C解析当n取1,2,3,4时,2n>n2+1不成立,当n=5时,25=32>52+1=26,即第一个能使2n>n2+1成立的n值为5,故选C.7.已知a+b+c=0,则ab+bc+ca的值()A.大于0 B.小于0C.不小于0 D.不大于0考点综合法及应用题点综合法的应用答案 D解析因为(a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0,又因为a2+b2+c2≥0,所以2(ab+bc+ca)≤0,即ab+bc+ca≤0.8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛考点演绎推理的综合应用题点演绎推理在其他方面的应用答案 B解析进入立定跳远决赛的有8人,根据成绩应是1号至8号.若a>63,则同时进入两决赛的不是6人,不符合题意;若61≤a≤63,则同时进入两决赛的有1,2,3,5,6,7号,符合题意;若a=60,则同时进入两决赛的不是6人,不符合题意;若a≤59,则同时进入两决赛的有1,3,4,5,6,7号,符合题意.综上可知,5号进入30秒跳绳决赛.9.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____________________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比 答案 正四面体的内切球的半径是高的14解析 原问题的解法为等面积法,即正三角形的面积S =12ah 1=3×12ar ⇒r =13h 1(其中a 是正三角形的边长,h 1是高,r 是内切圆半径).类比,用等体积法,V =13Sh 2=4×13R ·S ⇒R =14h 2(其中S 为底面正三角形的面积,h 2是高,R是内切球的半径). 10.已知2+23=223,3+38=338,4+415=4415,…,6+a b=6ab,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________. 考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案 41解析 由题意归纳推理得6+a b=6ab,b =62-1=35,a =6. ∴a +b =6+35=41.11.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是由数字1,2,…,7任意排成的一个数列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则________均为奇数.① 因为7个奇数之和为奇数,故有(a 1-1)+(a 2-2)+…+(a 7-7)为________.② 而(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=________.③ ②与③矛盾,故p 为偶数. 考点 反证法及应用 题点 反证法的应用答案 a 1-1,a 2-2,…,a 7-7 奇数 0解析 由假设p 为奇数可知,(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)=(a 1+a 2+…+a 7)-(1+2+…+7)=0为奇数,这与0为偶数相矛盾. 三、解答题12.用综合法或分析法证明:(1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2.考点 分析法和综合法的综合应用 题点 分析法和综合法的综合应用 证明 (1)当a ,b >0时,有a +b2≥ab , ∴lg a +b2≥lg ab , ∴lga +b 2≥12lg(ab )=lg a +lg b2. (2)要证6+10>23+2, 只需证(6+10)2>(23+2)2, 即260>248,这是显然成立的, ∴原不等式成立.13.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.考点 反证法及应用 题点 反证法的应用证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y 成立.于是有y (x +y )+x (x +y )=xy , 即x 2+y 2+xy =0, 即⎝⎛⎭⎫x +y 22+34y 2=0. 由y ≠0,得34y 2>0.又⎝⎛⎭⎫x +y22≥0, 所以⎝⎛⎭⎫x +y 22+34y 2>0. 与x 2+y 2+xy =0矛盾,故原命题成立. 四、探究与拓展14.设S ,V 分别表示表面积和体积,如△ABC 的面积用S △ABC 表示,三棱锥O -ABC 的体积用V O -ABC 表示,对于命题:如果O 是线段AB 上一点,则|OB →|·OA →+|OA →|·OB →=0.将它类比到平面的情形时,应该有:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0.将它类比到空间的情形时,应该有:若O 是三棱锥A -BCD 内一点,则有__________. 考点 类比推理的应用题点 平面几何与立体几何之间的类比答案 V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 15.给出下列等式:1=1, 1-4=-(1+2), 1-4+9=1+2+3, 1-4+9-16=-(1+2+3+4),……(1)写出第5个和第6个等式,并猜想第n (n ∈N *)个等式; (2)用数学归纳法证明你猜想的等式. 考点 利用数学归纳法证明等式 题点 等式中的归纳、猜想、证明(1)解 第5个等式为1-4+9-16+25=1+2+3+4+5, 第6个等式为1-4+9-16+25-36=-(1+2+3+4+5+6). 猜想第n 个等式为12-22+32-42+…+(-1)n -1n 2=(-1)n -1·(1+2+3+…+n ).(2)证明 ①当n =1时,左边=12=1,右边=(-1)0×1=1,左边=右边,猜想成立. ②假设当n =k (k ≥1,k ∈N *)时,猜想成立,即12-22+32-42+…+(-1)k -1k 2=(-1)k-1·k (k +1)2,则当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k (k+1)2=(-1)k (k +1)·⎣⎡⎦⎤(k +1)-k 2=(-1)k ·(k +1)[(k +1)+1]2, 故当n =k +1时,猜想也成立 由①②可知,对于任意n ∈N *,猜想均。

专题11概率与统计(分层训练)(原卷版)-2021年暑期高二升高三数学辅导讲义(人教A版2019)

专题11概率与统计(分层训练)(原卷版)-2021年暑期高二升高三数学辅导讲义(人教A版2019)

专题11 概率与统计1.(2021·重庆礼嘉中学高二期末)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200] (200,400] (400,600]1(优) 2 16 252(良) 5 10 123(轻度污染) 6 7 84(中度污染)7 2 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.8282.(2021·全国高三专题练习(文))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.3.(2021·全国高三专题练习)某市在争取创建全国文明城市称号,创建文明城市简称创城.是极具价值的无形资产和重要城市品牌.“创城”期间,将有创城检查人员到学校随机找人进行提问.问题包含:中国梦内涵、社会主义核心价值观、精神文明“五大创建”活动、文明校园创建“六个好”、“五个礼让”共5个问题,提问时将从中抽取2个问题进行提问.某日,创城检查人员来到A校,随机找了三名同学甲、乙、丙进行提问,其中甲只背了5个问题中的2个,乙背了其中的3个,丙背了其中的4个.计一个问题答对加10分,答错不扣分,最终三人得分相加,满分60分,达到30分该学校为合格,达到50分时该学校为优秀.(1)求A校优秀的概率(保留3位小数);(2)求出A校答对的问题总数X的分布列,并求出A校得分的数学期望;(3)请你为创建全国文明城市提出两条合理的建议.4.(2017·赣州市厚德外国语学校高三月考(理))(2017新课标全国II理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg 箱产量≥50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,22()()()()()n ad bcKa b c d a c b d-=++++5.(2021·西藏拉萨那曲第二高级中学高二期末(理))甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床150 50 200乙机床120 80 200合计270 130 400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.050 0.010 0.001k 3.841 6.635 10.8286.(2021·静宁县第一中学高二月考(文))《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据: 月份123 45违章驾驶员人数1201051009085(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程ˆˆy bxa =+; (2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.参考公式: ()()()1122211ˆˆˆ,nni i i i i i nni i i i x y nx yx x y y ba y bx x nxx x ====∑-∑--===-∑-∑-,参考数据:11415ni ii x y ==∑.7.(2021·全国高三专题练习)某公司为了预测下月产品销售情况,找出了近7个月的产品销售量y (单位:万件)的统计表: 月份代码t 1234567销售量y (万件)1y 2y 3y 4y 5y 6y 7y但其中数据污损不清,经查证719.32i i y ==∑,7140.17i i i t y ==∑,()7210.55ii y y =-=∑.(1)请用相关系数说明销售量y 与月份代码t 有很强的线性相关关系; (2)求y 关于t 的回归方程(系数精确到0.01);(3)公司经营期间的广告宣传费i i x t =(单位:万元)(1,2,,7i =),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)参考公式及数据:7 2.646≈,相关系数()()()()12211niii nniii i t t y y r t t y y ===--=--∑∑∑,当||0.75r >时认为两个变量有很强的线性相关关系,回归方程^^^y bt a =+中斜率和截距的最小二乘估计公式分别为^121()()()nii i nii tt y y b tt ==--=-∑∑,^^a y bt =-.8.(2018·义乌市义亭中学高二期中)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).9.(2020·全国高二课时练习)某校为校级元旦晚会选拔主持人,现有来自高一年级的参赛选手4名,其中男生2名;高二年级的参赛选手4名,其中男生3名.从这8名参赛选手中随机选择4人组成搭档参赛. (1)设事件A为“选出的4人中恰有2名男生,且这2名男生来自同一个年级”,求事件A发生的概率;(2)设X为选出的4人中男生的人数,求随机变量X的分布列.10.(2021·商丘市第一高级中学高二月考(理))袋中有2个白球,3个红球,5个黄球,这10个小球除颜色外都相同.(1)从袋中任取3个球,求恰好取到2个黄球的概率;(2)从袋中任取2个球,记取到红球的个数为ξ,求ξ的分布列.11.(2021·全国高二课时练习)某校五四青年艺术节选拔主持人,现有来自高一年级参赛选手4名,其中男生2名;高二年级参赛选手4名,其中男生3名.从这8名参赛选手中随机选择4人组成搭档参赛. (Ⅰ)设A为事件“选出的4人中恰有2名男生,且这2名男生来自同一个年级”,求事件A发生的概率; (Ⅱ)设X为选出的4人中男生的人数,求随机变量X的分布列和数学期望.12.(2017·甘肃高二期末(理))从2016年1月1日起全国统一实施全面两孩政策. 为了解适龄民众对放开生二胎政策的态度,某市选取70后作为调查对象,随机调查了10人,其中打算生二胎的有4人,不打算生二胎的有6人.(1)从这10人中随机抽取3人,记打算生二胎的人数为ξ,求随机变量ξ的分布列和数学期望;(2)若以这10人的样本数据估计该市的总体数据,且以频率作为概率,从该市70后中随机抽取3人,记打算生二胎的人数为η,求随机变量η的分布列和数学期望.13.(2021·定远县私立启明民族中学高三月考(理))在某市高中某学科竞赛中,某一个区4000名考生的参赛成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩z 服正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩不超过...84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001) 附:①2204.75s =,204.7514.31=;②2(,)z N μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501=.14.(2021·青铜峡市高级中学高二月考(理))甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.(1)求乙投球的命中率p;(2)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列.。

人教版数学《数据收集、整理与描述》单元测试A卷(含答案 )

人教版数学《数据收集、整理与描述》单元测试A卷(含答案 )

人教版数学《数据收集、整理与描述》单元测试A卷一、单选题1.100个数据组成的样本中,极差为23 cm,下述分组较合适的是( )A.组内差距为1 cm,分成24个组B.组内差距为2 cm,分成11组C.组内差距为3 cm,分成8个组D.组内差距为8 cm,分成23个组2.要了解某校七至九年级的课外作业负担情况,下列抽样调查样本的代表性较好的是()A.调查七年级全体女生B.调查八年级全体男生C.调查八年级全体学生D.随机调查七、八、九各年级的100名学生3.想了解建昌一中七年级学生的视力情况,抽出400名学生进行测试,应该( )A.从戴眼镜的同学中抽取样本进行视力状况随机测试B.从不戴眼镜的同学中抽取样本进行视力状况随机测试C.中午的时候,随机测试一些从事体育运动的七年级学生的视力状况D.到几个班级,在学校放学时,对出教室的七年级学生的视力状况随机测试4.要调查扬中市中学生了解“河豚节”的情况,下列调查方式最合适的是( )A.在某中学随机选取100名女生B.在某中学随机选取100名男生C.在某中学随机选取100名学生D.在全市随机选取100名学生5.下列调查中,适宜采用全面调查方式的是()A.调查市场上矿泉水的质量情况B.了解全国中学生的身高情况C.调查某批次电视机的使用寿命D.调查乘坐动车的旅客是否携带了违禁物品6.我市教育系统为了解本地区15000名初中生的体重情况,从中随机抽取了500名初中生的体重进行统计.以下说法正确的是()A.15000名初中生是总体B.500名初中生是总体的一个样本C.每名初中生的体重是个体D.500名初中生是样本容量7.为了了解2020年吴江区九年级学生学业水平考试的数学成绩,从中抽取了500名学生的数学成绩,下列说法正确的是()A.2020年吴江区九年级学生是总体B.500名九年级学生是总体的一个样本C.每一名九年级学生的数学成绩是个体D.样本容量是500名学生8.在下列调查方式中,较为合适的调查方式是()A.为了解深圳市中小学生的视力情况,采用普查的方式B.为了解深圳市中小学生的课外阅读习惯情况,采用普査的方式C.为了解某校七年级()2班学生期末考试数学成绩情况,采用抽样调査的方式D.为了解深圳市中小学生参加“课外兴趣班”报名情况,采用抽样调查的方式9.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112µg/cm2;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关,其中正确的说法是()A.①②③B.①②④C.①③④D.②③④10.下列调查中,适宜全面调查的是()A.调查市场上某种食品的色素含量是否符合国家标准B.了解我国七年级学生的身高情况C.调查春节联欢晚会的收视率D .飞机起飞前的安全检查二、填空题11.如图所示的折线统计图分别表示我市A 、B 两县在4月份的日平均气温,记该月A 、B 两县的日平均气温为12C ︒的天数分别是a 天和b 天,则a b +=__________.12.某工厂从一批保温杯中随机抽取1000个进行质量检测,结果有980个保温杯质量合格,那么可以估计这批保温杯的合格率约为_____.13.要反映我校某班参加不同社团人数占班级人数的百分比的情况,宜采用______统计图.(填“条形”“折线”或“扇形”)14.在PC 机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是 _____15.为了表示泊头市“五一”假期这几天的气温变化情况,最合适的统计图是______________.16.一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成____组.17.考察全体对象的调查我们常把它称为_____________调查;考察部分对象的调查称为___________调查.18.对初一年级某班50名学生数学成绩的分析,其中80~100分数段有21人,则这21人所占的百分比是______.19.整理数据使用的统计图有三种,分别为条形统计图,_____________统计图,____________统计图.20.“手机阅读”已逐渐成了眼科病的主要病因.随机选择150人进行调查,有99人有此习惯.据此调查,有“手机阅读”习惯的约占__________%.三、解答题21.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得不完整频数分布表和频数分布直方图如下:根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b=________,c =_________;(2)请补全频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?22.某校组织开展校园诗词大会,参赛学生均作答10题,每答对一题得1分.随机抽取的九年级50名学生答题分数的情况有如下所示的不完整的条形统计图.(1)请补全条形统计图;(2)参赛学生得分的众数为分,中位数为分;(3)求50名参赛学生得分的平均数.23.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查,调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)补全条形统计图;(2)在扇形统计图中,A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1500名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?24.为了了解2018年全国中学生数学竞赛情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下(部分未完成).请根据以上图表中提供的信息,解答下列问题:(1)本次调查的样本容量为______________.(2)在表中:m=_____________,n=____________.(3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,某中学有200人参加比赛,那么你估计该校约有多少人取得优秀成绩?25.某中学为合理开展“体艺2+1”活动,随机抽取部分学生进行问卷调查(每位学生只选择一种自己喜欢的项目),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生有人,在扇形统计图中,表示参加“绘画”学生的扇形的圆心角为;(2)将条形统计图补充完整;(3)若该中学有1 450名学生,则估计该中学喜欢“篮球”的学生共有多少人?26.2018年南充市有县区申报了长寿之乡,并获认定.上月某中学九(1)班学生社会实践前往该区一乡镇调研进入老龄化社会的数据.按国际通行标准,当一个国家或地区60及60岁以上人口达到人口总数的10%,或65及65岁以上人口达到人口总数的7%,这个区域进入老龄化社会.被调查的800人年龄情况统计图如下:(1)该乡镇是否进入老龄化社会?并说明理由.(2)请你为该乡镇提一条合理化建议.(3)在该乡镇60岁及以上人群中随机抽取1人,求年龄不低于70岁的概率。

2012届高三一轮复习名师一号文科数学第九模块概率与统计综合检测

2012届高三一轮复习名师一号文科数学第九模块概率与统计综合检测

第九模块概率与统计综合检测(时间120分钟,满分150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某班有60名学生,要从中抽取6人参加某项测试,老师选择了学号为6,16,26,36,46,56的6人,这种抽取样本的方法是( )A.抽签法B.系统抽样C.分层抽样D.随机数法解析:被抽取的6人的学号有相同的间隔,符合系统抽样.答案:B2.(2010·烟台模拟)某机构调查了当地1000名居民的月收入,并根据所得数据画了样本的频率分布直方图,为了分析居民的收入与学历等方面的关系,要从这1000人中再用分层抽样方法抽出100人做进一步调查,则在[2500,3000)(元)月收入段应抽取的人数是( )A.50B.5C.10D.25解析:本题为分层抽样与频率分布直方图的应用.由图知收入在[2500,3000)(元)的频率为0.0005×500=0.25,故抽取人数为0.25×100=25.答案:D3.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )A.3,2B.2,3C.2,30D.30,2解析:因为92÷30不是整数,因此必须先剔除部分个体,因为92÷30商3余2,故剔除2个即可,而间隔为3.答案:A4.从1,2,3,4这四个数中,不重复地任取两个数,取出的两数一奇一偶的概率是( )A.16B.13C.25D.23解析:从1,2,3,4中任取两个数,有6种取法,它们是:1和2,1和3,1和4,2和3,2和4,3和4.其中一奇一偶的有4种可能,故所求的概率为P=42 63 =.答案:D5.(2010·天津模拟)如图是某体育比赛现场上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.5;1.6B.85;1.6C.85;0.4D.5;0.4解析:去掉一个最高分和一个最低分后,所得分数为84,84,84,86,87,所以平均数15 x=(84+84+84+86+87)=85,方差为s2=15[(84-85)2×3+(86-85)2+(87-85)2]=1.6.答案:B6.已知变量x,y呈线性相关关系,且回归方程ˆy=-3x+10,则( )A.变量x增加一个单位,变量y平均增加3个单位B.变量x,y是线性正相关关系C.变量x,y是线性负相关关系D.变量x,y是确定的函数关系解析:由回归方程知,y随x的增大而减小,因此变量x与y是负相关关系. 答案:C7.(江苏高考)两个相关变量满足如下关系:x 10 15 20 25 30y 1003 1005 1010 1011 1014两个变量的回归方程为( )A.ˆy =0.56x+997.4B.ˆy =0.63x-231.2C.ˆy =50.2x+501.4D.ˆy =60.4x+400.7解析:解法一:求数据中心点的坐标为(20,1008.6),代入验证知A适合.解法二:计算b=51522150.56.997.45i iiiix y xya y bxx x==-==-=-∑∑.∴回归方程为ˆy=0.56x+997.4.答案:A8.已知变量y与x之间的相关系数r=-0.9362,查表得到相关系数临界值r0.05=0.8013,若要使可靠性不低于95%,则可以认为变量y与x之间( )A.不具有线性相关关系B.具有线性相关关系C.它们的线性关系还需要进一步确定D.不确定解析:因为|r|>r0.05,根据线性回归分析原理,可以认为变量y与x之间具有线性相关关系.答案:B9.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )A.99%B.95%C.90%D.无充分根据解析:χ2=250(181589)26242723⨯⨯-⨯⨯⨯⨯≈5.0585>3.841,∴有95%的把握认为喜欢玩电脑游戏与认为作业量的多少有关系.答案:B10.某班50名学生在一次百米测试中,成绩全部在[13,18](单位:秒)内,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].如图是按上述分组方法得到的频率分布直方图.且第一组,第二组,第四组的频率成等比数列,则成绩在[13,15)内的学生人数为( )A.12B.14C.16D.10解析:依题意可设第一组,第二组,第四组的频率分别为0.08,0.08q,0.08q2(q>0).由频率分布直方图的面积和为1,得0.08+0.08q+0.08q2+0.38+0.06=1,化简得q2+q-6=0,解得q=2,q=-3(舍去).所以,第二组的频率为0.16.故成绩在[13,15)内的学生人数为(0.08+0.16)×1×50=12.答案:A二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11.(2010·浙江卷)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.解析:甲组数从小到大排序后,最中间的数是45,即甲组数的中位数是45.同理乙组数的中位数是46.答案:45 4612.(2010·福建卷)将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前3组数据的频数之和等于27,则n 等于________.解析:设第一至第六组的频数分别为2x,3x,4x,6x,4x,x,则2x+3x+4x=27,解得x=3.所以n=20x=60.答案:6013.(2008·湖南卷)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表:则该地区生活不能自理的老人中男性比女性约多________人.解析:由表中数据可知,15000人中生活不能自理的男性有15000×23500=690人,女性有15000×21500=630人,因此男性比女性约多60人. 答案:6014.甲、乙、丙三位棉农,统计连续5年的单位面积产量(千克/亩).如下表:则产量稳定的是棉农________.解析:计算平均数:x 甲=70,x 乙=70,x 丙=70,计算方差:s 2甲=4,s 2乙=45,s 2丙=2. ∵s 2乙<s 2丙<s 2甲,∴产量稳定的是棉农乙. 答案:乙15.某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A 、B 、C 、D 四个单位回收的问卷数依次成等差数列,且共回收1000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽30份,则在D 单位抽取的问卷是________份.解析:由题意依次设在A 、B 、C 、D 四个单位回收的问卷数依次为a 1,a 2,a 3,a 4,则2301501000a =,∴a 2=200,又a 1+a 2+a 3+a 4=1000,即3a 2+a 4=1000,∴a 4=400.设在D 单位抽取的问卷数为n,则1504001000n =,∴n=60. 答案:60三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.分别在集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数. (1)求其和为偶数的概率; (2)求其积为偶数的概率.解:其中基本事件有:{1,5},{1,6},{1,7},{1,8},{2,5},{2,6},{2,7},{2,8},{3,5},{3,6},{3,7},{3,8},{4,5},{4,6},{4,7},{4,8},共16个.(1)设其和为偶数为事件A,则A包含的基本事件有:{1,5},{1,7},{2,6},{2,8},{3,5},{3,7},{4,6},{4,8},共8个.∴P(A)=81 162=.(2)设其积为偶数为事件B,则B包含的基本事件有:{1,6},{1,8},{2,5},{2,6},{2,7},{2,8},{3,6},{3,8},{4,5},{4,6},{4,7},{4,8},共12个.∴P(B)=123 164=.17.某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管15支,若将上述频率作为概率,估计经过1500小时约需换几支灯管.解:(1)(2)由(1)可得,0.048+0.121+0.208+0.223=0.6.∴灯管使用寿命不足1500小时的频率是0.6.(3)由(2)知,灯管使用寿命不足1500小时的概率为0.6,15×0.6=9.故经过1500小时约需换9支灯管.18.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.解:(1)积极参加班级工作的学生有24名,总人数为50名,概率为2412 5025=.不太主动参加班级工作且学习积极性一般的学生有19名,概率为19 50.(2)χ2=250(181967)150 2525242613⨯⨯-⨯=⨯⨯⨯≈11.538,∵χ2>10.828,∴有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系.19.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.解:(1)画茎叶图如下图,中间数为数据的十位数.从这个茎叶图中可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是33.5,甲的中位数是33.因此,乙发挥比较稳定,总体得分情况比甲好.(2)利用科学计算器算得:x 甲=33,x 乙=33;s 甲≈3.96,s 乙≈3.56;甲的中位数是33,乙的中位数是33.5.综合比较知,选乙参加比赛较为合适.20.某校高三文科分为四个班,高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如下图所示,其中120~130分(包括120分但不包括130)的频率为0.05,此分数段的人数为5人.(1)各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取1名学生,求分数不小于90分的概率.解:(1)由频率分布条形图知,抽取的学生总数为50.05=100人. ∵各班被抽取的学生人数成等差数列,设其公差为d,由4×22+6d=100,得d=2. ∴各班被抽取的学生人数分别是22人,24人,26人,28人.(2)在抽取的所有学生中,任取一名学生,其分数不小于90分的概率为0.35+0.25+0.10+0.05=0.75.21.为了分析某个高三学生的学习状态.对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x,物理成绩y 进行分析,下表是该生7次考试的成绩(单位:分):(1)他的数学成绩与物理成绩,哪个更稳定?请说明理由;(2)已知该生的物理成绩y 与数学成绩x 是呈线性相关关系的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.解:(1)121717880121007x --+-+++=+=100,69844161007y --+-+++=+=100;∴2s 数学=9947,2s 物理=2507, 从而s2数学>s2物理,∴物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系:计算b=497994=0.5,a=100-0.5×100=50, ∴线性回归方程为ˆy=0.5x+50. 当y=115时,x=130.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.。

高中数学(人教版A版选修2-3)配套单元检测:第3章 统计案例 3.1学业分层测评 Word版含答案

高中数学(人教版A版选修2-3)配套单元检测:第3章 统计案例 3.1学业分层测评 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.为了研究变量x和y的线性相关性,甲、乙两人分别利用线性回归方法得到回归直线l1和l2,已知两人计算过程中x-,y-分别相同,则下列说法正确的是()A.l1与l2一定平行B.l1与l2重合C.l1与l2相交于点(x-,y-)D.无法判断l1和l2是否相交2.甲、乙、丙、丁四位同学在建立变量x,y的回归模型时,分别选择了4种不同模型,计算可得它们的相关指数R2分别如下表:甲乙丙丁R20.980.780.500.85A.甲B.乙C.丙D.丁3.对变量x,y进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是()4.对于指数曲线y=a e bx,令U=ln y,c=ln a,经过非线性化回归分析后,可转化的形式为()A.U=c+bx B.U=b+cxC.y=c+bx D.y=b+cx5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如表所示:则y对xA.y^=x-1B.y^=x+1C.y^=88+12x D.y^=176二、填空题6.甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性进行分析,并用回归分析的方法分别求得相关指数R2与残差平方和Q(a^,b^)如下表:则能体现A.7.在对两个变量进行回归分析时,甲、乙分别给出两个不同的回归方程,并对回归方程进行检验.对这两个回归方程进行检验时,与实际数据(个数)对比结果如下:8.如果某地的财政收入x与支出y满足线性回归方程y=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|≤0.5,如果今年该地区财政收入为10亿元,则年支出预计不会超过________亿元. 【导学号:97270060】三、解答题9.某服装店经营某种服装,在某周内纯获利y(元)与该周每天销售这种服装件数x之间的一组数据如下表:(1)(2)画出散点图;(3)求纯获利y与每天销售件数x之间的回归方程.10.为了研究某种细菌随时间x变化繁殖个数y的变化,收集数据如下:(1)(2)求y与x之间的回归方程.[能力提升]1.某学生四次模拟考试中,其英语作文的减分情况如表:显然所减分数y则其线性回归方程为()A.y=0.7x+5.25 B.y=-0.6x+5.25C.y=-0.7x+6.25 D.y=-0.7x+5.252.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:x 6 8 10 12 y2356若x 与y .3.某品牌服装专卖店为了解保暖衬衣的销售量y (件)与平均气温x (℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:时间 二月上旬二月中旬二月下旬 三月上旬旬平均气温x (℃) 3 8 12 17 旬销售量y (件)55m3324由表中数据算出线性回归方程y =b x +a 中的b =-2,样本中心点为(10,38).(1)表中数据m =__________.(2)气象部门预测三月中旬的平均气温约为22 ℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量约为__________件.4.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.图3-1-2xyw∑i =18(x i -x )2∑i =18(w i -w )2 ∑i =18(x i -x )(y i -y ) ∑i =18(w i -w )(y i -y ) 46.65636.8289.81.61 469108.8表中w i =x i ,w ]=18∑i =18w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v -β^ u .学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.为了研究变量x 和y 的线性相关性,甲、乙两人分别利用线性回归方法得到回归直线l 1和l 2,已知两人计算过程中x -,y -分别相同,则下列说法正确的是( )A .l 1与l 2一定平行B .l 1与l 2重合C .l 1与l 2相交于点(x -,y -)D .无法判断l 1和l 2是否相交【解析】 回归直线一定过样本点的中心(x -,y -),故C 正确. 【答案】 C2.甲、乙、丙、丁四位同学在建立变量x ,y 的回归模型时,分别选择了4种不同模型,计算可得它们的相关指数R 2分别如下表:甲 乙 丙 丁 R 20.980.780.500.85A .甲B .乙C .丙D .丁【解析】 相关指数R 2越大,表示回归模型的拟合效果越好. 【答案】 A3.对变量x ,y 进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是( )【解析】 用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.【答案】 A4.对于指数曲线y =a e bx ,令U =ln y ,c =ln a ,经过非线性化回归分析后,可转化的形式为( )A .U =c +bxB .U =b +cxC .y =c +bxD .y =b +cx【解析】 由y =a e bx 得ln y =ln(a e bx ),∴ln y =ln a + ln e bx ,∴ln y =ln a +bx ,∴U =c +bx .故选A. 【答案】 A5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如表所示:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x A.y ^=x -1 B.y ^=x +1 C.y ^=88+12x D.y ^=176【解析】 设y 对x 的线性回归方程为y ^=b^x +a ^, 因为b ^=-2×(-1)+0×(-1)+0×0+0×1+2×1(-2)2+22=12,a ^=176-12×176=88,所以y 对x 的线性回归方程为y ^=12x +88.【答案】 C 二、填空题6.甲、乙、丙、丁四位同学各自对A ,B 两变量的线性相关性进行分析,并用回归分析的方法分别求得相关指数R 2与残差平方和Q (a^,b ^)如下表:则能体现A .【解析】 丁同学所求得的相关指数R 2最大,残差平方和Q (a ^,b ^)最小.此时A ,B 两变量线性相关性更强.【答案】 丁7.在对两个变量进行回归分析时,甲、乙分别给出两个不同的回归方程,并对回归方程进行检验.对这两个回归方程进行检验时,与实际数据(个数)对比结果如下:【解析】 可以根据表中数据分析,两个回归方程对数据预测的正确率进行判断,甲回归方程的数据准确率为3240=45,而乙回归方程的数据准确率为4060=23.显然甲的准确率高些,因此甲回归方程好些.【答案】 甲8.如果某地的财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5,如果今年该地区财政收入为10亿元,则年支出预计不会超过________亿元. 【导学号:97270060】【解析】 ∵x =10时,y =0.8×10+2+e =10+e ,∵|e|≤0.5,∴y≤10.5.【答案】10.5三、解答题9.某服装店经营某种服装,在某周内纯获利y(元)与该周每天销售这种服装件数x之间的一组数据如下表:x 3456789y 66697381899091(1)(2)画出散点图;(3)求纯获利y与每天销售件数x之间的回归方程.【解】(1)x-=6,y-≈79.86,样本点的中心为(6,79.86).(2)散点图如下:(3)因为b^=∑i=17(x i-x-)(y i-y-)∑i=17(x i-x-)2≈4.75,a^=y--b^x-≈51.36,所以y^=4.75x+51.36.10.为了研究某种细菌随时间x变化繁殖个数y的变化,收集数据如下:时间x/天12345 6繁殖个数y 612254995190(1)(2)求y与x之间的回归方程.【解】(1)散点图如图所示:(2)由散点图看出样本点分布在一条指数函数y=c1e c2x的周围,于是令z=ln y,则x 12345 6z 1.79 2.48 3.22 3.89 4.55 5.25由计算器算得,z=0.69x+1.112,则有y=e0.69x+1.112.[能力提升]1.某学生四次模拟考试中,其英语作文的减分情况如表:考试次数x 123 4所减分数y 4.543 2.5显然所减分数y则其线性回归方程为()A.y=0.7x+5.25 B.y=-0.6x+5.25C.y=-0.7x+6.25 D.y=-0.7x+5.25【解析】由题意可知,所减分数y与模拟考试次数x之间为负相关,所以排除A.考试次数的平均数为x=14(1+2+3+4)=2.5,所减分数的平均数为y=14(4.5+4+3+2.5)=3.5,即直线应该过点(2.5,3.5),代入验证可知直线y=-0.7x+5.25成立,故选D. 【答案】 D2.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:x 681012y 235 6若x与y.【解析】 ∑i =1n x i y i =6×2+8×3+10×5+12×6=158,x -=6+8+10+124=9,y -=2+3+5+64=4,∑i =1nx 2i =62+82+102+122=344, b^=158-4×9×4344-4×92=1420=0.7, a ^=y --b ^x -=4-0.7×9=-2.3, 故线性回归方程为y ^=0.7x -2.3. 【答案】 y ^=0.7x -2.33.某品牌服装专卖店为了解保暖衬衣的销售量y (件)与平均气温x (℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:由表中数据算出线性回归方程y =b x +a 中的b =-2,样本中心点为(10,38). (1)表中数据m =__________.(2)气象部门预测三月中旬的平均气温约为22 ℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量约为__________件.【解析】 (1)由y =38,得m =40. (2)由a^=y -b ^ x ,得a ^=58, 故y ^=-2x +58, 当x =22时,y ^=14,故三月中旬的销售量约为14件. 【答案】 (1)40 (2)144.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.图3-1-2xyw∑i =18(x i -x )2∑i =18(w i -w )2 ∑i =18(x i -x )(y i -y ) ∑i =18(w i -w )(y i -y ) 46.65636.8289.81.61 469108.8表中w i =x i ,w ]=18∑i =18w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v -β^ u . 【解】 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d^=∑i =18(w i -w )(y i -y )∑i =18(w i -w )2=108.81.6=68,c ^=y -d^ w =563-68×6.8=100.6, 所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。

【成才之路】2021学年高中数学 2-3 第三章 统计案例综合检测 新人教A版选修2-3(1)

【成才之路】2021-2021学年高中数学 2-3 第三章统计案例综合检测新人教A版选修2-3时刻120分钟,总分值150分。

一、选择题(本大题共12个小题,每题5分,共60分,在每题给出的四个选项中只有一个是符合题目要求的)1.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y^=-0.7x+a,那么a等于( )A.10.5 B.5.15C.5.2 D.5.25[答案] D[解析] x=2.5,y=3.5,∵回归直线方程过定点(x,y),∴3.5=-0.7×2.5+a,∴a=5.25.应选D.2.(2021·湖南益阳市箴言中学模拟)四名同窗依照各自的样本数据研究变量x、y之间的相关关系,并求得回归直线方程,别离取得以下四个结论:①y与x负相关且y^=2.347x-6.423;②y与x负相关且y^=-3.476x+5.648;③y与x正相关且y^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578.其中必然不正确的结论的序号是( )A.①②B.②③C.③④D.①④[答案] D[解析] y 与x 正(或负)相关时,线性回归直线方程y =b ^x +a ^中,x 的系数b ^>0(或b ^<0),故①④错. 3.有甲、乙两种钢材,从中各取等量样品查验它们的抗拉强度指标如下: 甲乙A .期望与方差B .正态分布C .K 2D .概率[答案] A4.(2021·安徽示范高中联考)给出以下五个命题:①将A 、B 、C 三种个体按3∶1∶2的比例分层抽样调查,若是抽取的A 个体为9个,那么样本容量为30; ②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;③甲组数据的方差为5,乙组数据为5,6,9,10,5,那么这两组数据中比较稳固的是甲;④已知具有相关关系的两个变量知足的回归直线方程为y =1-2x ,那么x 每增加1个单位,y 平均减少2个单位;⑤统计的10个样本数据为12五、120、12二、10五、130、114、11六、9五、120、134,那么样本数据落在[114.5,124.5)内的频率为0.4.其中真命题为( ) A .①②④ B .②④⑤ C .②③④ D .③④⑤ [答案] B[解析] ①样本容量为9÷36=18,①是假命题;②数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,②是真命题;③x -乙=5+6+9+10+55=7,s 2乙=15[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=15×(4+1+4+9+4)=4.4,∵s 2甲>s 2乙,∴乙稳固,③是假命题;④是真命题;⑤数据落在[114.5,124.5)内的有:120,122,116,120共4个,故所求概率为410=0.4,⑤是真命题.5.对变量x 、y 观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u 、v 有观测数据(u 1,v 1)(i =1,2,…,10),得散点图2.由这两个散点图能够判定.( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 此题要紧考查了变量的相关知识,考查学生分析问题和解决问题的能力. 用散点图能够判定变量x 与y 负相关,u 与v 正相关.6.(2021·济南市模拟)为了解疾病A 是不是与性别有关,在一医院随机地对入院50人进行了问卷调查取得了如下的列联表:患疾病A 不患疾病A 总计 男 20 5 25 女 10 15 25 总计302050请计算出统计量K 2,你有多大的把握以为疾病A 与性别有关( ) 下面的临界值表供参考:P (K 2≥k ) 0.05 0.010 0.005 0.001 k3.8416.6357.87910.828A.95% B .99% C .99.5% D .99.9%[答案] C[解析] 由公式得K 2=50×20×15-5×10225×25×30×20≈8.333>7.879,故有1-0.005=99.5%的把握以为疾病A与性别有关.7.(2021·洛阳市高二期中)已知回归直线的斜率的估量值是2,样本点的中心为(4,12),那么回归直线的方程是( )A.y^=2x+4 B.y^=52x+2C.y^=2x-20 D.y^=16x+2[答案] A[解析] 由回归直线方程y^=b^x+a^的概念知,b^=2,∵回归直线过样本点的中心,∴12=2×4+a^,∴a^=4,∴回归直线方程为y^=2x+4.8.以下关于线性回归的判定,正确的个数是( )①假设散点图中所有点都在一条直线周围,那么这条直线为回归直线;②散点图中的绝大多数都线性相关,个别特殊点不阻碍线性回归,如图中的A,B,C点;③已知回归直线方程为y^=0.50x-0.81,那么x=25时,y的估量值为11.69;④回归直线方程的意义是它反映了样本整体的转变趋势.A.0 B.1C.2 D.3[答案] D[解析] 能使所有数据点都在它周围的直线不止一条,而据回归直线的概念知,只有按最小二乘法求得回归系数a^,b^取得的直线y^=bx+a^才是回归直线,∴①不对;②正确;将x=25代入y^=0.50x-0.81,得y^=11.69,∴③正确;④正确,应选D.9.(2021·辽宁省协作体联考)甲、乙两位歌手在“中国好声音”选拔赛中,5次得分情形如茎叶图所示,记甲、乙两人的平均得分别离为x甲、x乙,那么以下判定正确的选项是( )A.x甲<x乙,乙比甲成绩稳固B.x甲<x乙,甲比乙成绩稳固C.x甲>x乙,甲比乙成绩稳固D.x甲>x乙,乙比甲成绩稳固[答案] A[解析] x甲=15(77+76+88+90+94)=85x乙=15(75+88+86+88+93)=86∴x甲<x乙且乙的成绩散布比甲的成绩散布集中稳固,应选A.10.下面是调查某地域男、女中学生是不是喜爱理科的等高条形图,阴影部份表示喜爱理科的百分比,从以下图能够看出( )A.性别与是不是喜爱理科无关B.女生中喜爱理科的比例约为80%C.男生比女生喜爱理科的可能性大些D.男生中喜爱理科的比例约为40%[答案] C[解析] 从图中能够看出,男生喜爱理科的比例为60%,而女生比例仅为20%,这两个比例不同较大,说明性别与是不是喜爱理科是有关系的,男生比女生喜爱理科的可能性更大一些.11.在成立两个变量y与x的回归模型中,别离选择了4个不同模型,它们的相关指数R2如下,其中拟合得最好的模型为( )A.模型1的相关指数R2为0.75 B.模型2的相关指数R2为0.90C.模型3的相关指数R2为0.25 D.模型4的相关指数R2为0.55[答案] B[解析] 相关指数R 2的值越大,意味着残差平方和越小,也确实是说模型的拟合成效越好,应选B. 12.下面是某市场农产品的调查表. 市场供给量表:市场需求量表:A .(2.3,2.6)B .(2.4,2.6)C .(2.6,2.8)D .(2.8,2.9)[答案] C[解析] 以横轴为单价,纵轴为市场供、需量,在同一坐标系中描点,用近似曲线观看可知选C. 二、填空题(本大题共4个小题,每题4分,共16分,把正确答案填在题中横线上) 13.已知一个回归直线方程为y ^=1.5x +45,x ∈{1,7,5,13,19},那么y =________. [答案] 58.5[解析] 因为x =15(1+7+5+13+19)=9,且y =1.5x +45,因此y =1.5×9+45=58.5.此题易错的地方是依照x 的值及y ^=1.5x +45求出y 的值再求y ,由y ^=1.5x +45求得的y 值不是原始数据,故错误.14.给出以下命题:①样本方差反映了所有样本数据与样本平均值的偏离程度;②假设随机变量X ~N (0.43,0.182),那么此正态曲线在x =0.43处达到峰值; ③在回归分析模型中,残差平方和越小,说明模型的拟合成效越差;④市政府调查江北水城市民收入与市民旅行欲望的关系时,抽查了3000人.通过计算得K 2=6.023,依照这一数据查阅下表,那么市政府有97.5%以上的把握以为市民收入与旅行欲望有关系.[答案] ①②④[解析] 依照样本方差的概念、正态散布的概念可知①②均正确;在回归散布中,残差的平方和越小,说明模型的拟合成效越好,即X与Y有很强的关系,因此③不正确;通过表中的数据和K2=6.023>5.024可知,能够以为有97.5%以上的把握以为市民收入与旅行欲望有关系,因此④正确.15.调查了某地假设干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据取得y对x的回归直线方程:y^=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.[答案] 0.254[解析] 由回归直线方程为y^=0.254x+0.321知收入每增加1万元,饮食支出平均增加0.254万元.16.某市居民2005~2020年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:________线性相关关系.[答案] 13 正[解析] 中位数的概念的考查,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时须取中间两数的平均数.由统计资料能够看出,当平均收入增多时,年平均支出也增多,因此二者之间具有正线性相关关系.三、解答题(本大题共6个大题,共74分,解许诺写出文字说明,证明进程或演算步骤)17.(此题总分值12分)(2021·洛阳市高二期中)媒体为调查喜爱娱乐节目A是不是与性额外向有关,随机抽取了500名性额外向的和500名性格内向的居民,抽查结果用等高条形图表示如下:(1)作出2×2列联表;(2)试用独立性查验的方式分析,可否在犯错误的概率不超过0.001的前提下说明喜爱娱乐节目A与性额外向有关?[解析] (1)由等高条形图,性额外向的人中喜爱节目A 的有500×0.8=400人,性格内向的人中喜爱节目A 的有500×0.5=250人,作2×2列联表如下:喜欢节目A 不喜欢节目A 合计 性格外向 400 100 500 性格内向 250 250 500 合计650350 1000(2)K 2的观测值k =1000×400×250-100×2502500×500×650×350≈98.901,∵98.901>10.828,∴能在犯错误的概率不超过0.001的前提下说明喜爱娱乐节目A 与性额外向有关.18.(此题总分值12分)某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,从该部门内随机抽选了10个企业为样本,有如下资料:产量x (千件) 生产费用(千元) 40 150 42 140 48 160 55 170 65 150 79 162 88 185 100 165 120 190 140185(1)计算x 与y 的相关系数;(2)对这两个变量之间是不是线性相关进行查验; (3)设回归方程为y ^=b ^x +a ^,求回归系数. [解析] (1)依照数据可得:x =77.7,y=165.7,∑10i =1x 2i =70903,∑10i =1y 2i =277119,∑10i =1x i y i =132938,因此r =0.808,即x 与y 之间的相关系数r ≈0.808;(2)因为r >0.75,因此能够为x 与y 之间具有线性相关关系; (3)b ^=0.398,a ^=134.8.19.(此题总分值12分)(2021·云南玉溪一中高三月考)为考查某种药物预防疾病的成效,进行动物实验,取得如下丢失数据的列联表:患病 未患病 总计 没服用药 203050 服用药 x y 50 总计MN100设从没服用药的动物中任取2只,未患病数为ξ;从服用药物的动物中任取2只,未患病数为η,工作人员曾计算过P (ξ=0)=389P (η=0).(1)求出列联表中数据x 、y 、M 、N 的值;(2)求ξ与η的均值(期望)并比较大小,请说明所得结论的实际含义; (3)能够以99%的把握以为药物有效吗? 参考公式:K 2=n ad -bc2a +bc +da +cb +d.①当K 2≥3.841时有95%的把握以为ξ、η有关联; ②当K 2≥6.635时有99%的把握以为ξ、η有关联. [分析] (1)从已知P (ξ=0)=389P (η=0)动身,结合2×2列联表可求.(2)求出ξ、η的散布列,再利用期望概念式求E (ξ)和E (η)即可. (3)利用公式算出K 2,结合参考数据能够判定.[解析] (1)∵P (ξ=0)=C 220C 250,P (η=0)=C 2xC 250,∴C 220C 250=389×C 2xC 250,∴x =10. ∴y =40,∴M =30,N =70. (2)ξ取值为0、一、2.P (ξ=0)=C 220C 250=38245,P (ξ=1)=C 120C 130C 250=120245,P (ξ=2)=C 230C 250=87245.ξ 0 1 2P3824512024587245∴E (ξ)=294245.P (η=0)=C 210C 250=9245.P (η=1)=C 110C 140C 250=80245.P (η=2)=C 240C 250=156245.η 0 1 2P924580245156245∴E (η)=392245.∴E (ξ)<E (η),即说明药物有效. (3)∵K 2=100×800-300230×70×50×50≈4.76.∵4.76<6.635,∴不能够有99%的把握以为药物有效.20.(此题总分值12分)(2021·洛阳市高二期中)以下资料是一名销售领导搜集来的每一年销售额和销售体会年数的关系的一组样本数据:(1)(2)试预测销售体会为8年时的年销售额约为多少万元(精准到十分位)?[解析] (1)由散点图知y 与x 呈线性相关关系,由表中数据计算得,x -=6,y -=10,b ^=59180,a ^=24130,回归直线方程:y ^=59180x +24130.(2)x =8时,预测年销售额为59180×8+24130≈10.7万元.21.(此题总分值12分)(2021·广东理,17)某班50位学生期中考试数学成绩的频率散布直方图如以下图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.[分析] (1)利用频率和为1,可求x 值;(2)先确信各部份人数,再确信ξ取值,利用组合知识,用古典概型求ξ的散布列,再求数学期望. [解析] (1)图中x 所在组为[80,90]即第五组,∵由频率散布直方图的性质知,10×(0.054+x +0.01+3×0.006)=1, ∴x =0.018.(2)成绩不低于80分的学生所占的频率为f =10×(0.018+0.006)=0.24, 因此成绩不低于80分的学生有:50f =50×0.24=12人. 成绩不低于90分的学生人数为:50×10×0.006=3 因此为ξ的取值为0、一、2P (ξ=0)=C 29C 212=611,P (ξ=1)=C 19×C 13C 212=922,P (ξ=2)=C 23C 212=122因此ξ的散布列为:ξ 0 1 2P611922122因此为ξ的数学期望E (ξ)=0×611+1×922+2×122=12.[点评] (1)此题考查频率散布直方图与随机变量的散布列,数学期望等知识,考查抽象归纳能力与应用意识. (2)应用古典概型求事件的概率是散布列的常见命题方式.22.(此题总分值14分)在一个文娱网络中,点击观看某个节目的积存人次和播放天数如下表:播放天数1 2 3 4 5 点击观看的累积人次 51 134 213 235 262 播放天数6 7 8 9 10 点击观看的累积人次294330378457533(1)画出散点图;(2)判定两变量之间是不是具有线性相关关系,求回归直线方程是不是成心义? [解析] (1)散点图如下图.(2)由散点图知两变量线性相关,故求回归直线方程成心义.或借助科学计算器,完成下表中的有关计算.i 1 2 3 4 5 6 7 8 9 10 x i 1 2 3 4 5 6 7 8 9 10 y i 51 134 213 235 262 294 330 378 457 533 x i y i51268639940131017642310302441135330x =5.5,y =288.7,∑i =110x 2i =385,∑i =110y 2i =1020953,∑i =110x i y i =19749利用上表的结果,计算积存人次与播放天数之间的相关系数r =19749-10×5.5×288.7385-10×5.52×1020953-10×288.72≈0.984>0.75.这说明积存人次与播放天数之间存在着线性相关关系,求回归直线方程成心义. 1.已知x 、y 的取值如下表所示:假设从散点图分析,y 与x 线性相关,且线性回归直线方程为y =0.95x +a ^,那么a ^的值等于( ) A .2.6 B .6.3 C .2 D .4.5[答案] A[解析] ∵x =2,y =4.5而回归直线方程过样本中心点(2,4.5), ∴a ^=y -0.95x =4.5-0.95×2=2.6,应选A.2.在2021年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价钱进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如下表所示:通过度析,发觉销售量y x 的回归直线方程为__________________.[答案] y ^=-3.2x +40[解析]∑i =15x i y i=392,x -=10,y -=8,∑i =15(x i-x -)2=2.5,代入公式,得b ^=-3.2,因此,a ^=y --b ^x -=40,故回归直线方程为y ^=-3.2x +40.3.在一段时刻内,某种商品的价钱x 元和需求量y 件之间的一组数据为求出y 对x [解析]x =15(14+16+18+20+22)=18,y =15×(12+10+7+5+3)=7.4,∑5i =1x 2i =142+162+182+202+222=1660, ∑5 i =1y 2i =122+102+72+52+32=327, ∑5i =1x i y i =14×12+16×10+18×7+20×5+22×3=620,∴b ^=∑5i =1x i y i -5x ·y ∑5i =1x 2i -5x2=620-5×18×7.41660-5×182=-4640=-1.15.∴a ^=7.4+1.15×18=28.1.∴回归直线方程为y ^=-1.15x +28.1. 列出残差表为:y i -y ^i 0 0.3 -0.4 -0.1 0.2 y i -y4.62.6-0.4-2.4-4.4∴∑5i =1 (y i -y ^i )2=0.3,∑5 i =1 (y i -y )2=53.2,R 2=1-∑5i =1 y i -y ^i2∑5i =1 y i -y2≈0.994.∴R 2=0.994.因此拟合成效较好.4.(2021·济南模拟) 为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数散布及对楼市限购令的同意人数如下表:月收入 [15,25) [25,35) [35,45) [45,55) [55,65) [65,75) 频数 5 10 15 10 5 5 赞成人数488521(1)依照已知条件完成下面的2×2列联表,有多大的把握以为赞不同意楼市限购令与收入高低有关?已知:K 2=a +b +c +d ad -bc 2a +bc +da +cb +d,当K 2<2.706时,没有充分的证据判定赞不同意楼市限购令与收入高低有关;当K 2>2.706时,有90%的把握判定赞不同意楼市限购令与收入高低有关;当K 2>3.841时,有95%的把握判定赞不同意楼市限购令与收入高低有关;当K 2>6.635时,有99%的把握判定赞不同意楼市限购令与收入高低有关。

人教版数学《数据的分析》单元测试A卷(含答案 )

人教版数学《数据的分析》单元测试A 卷一、单选题1.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93, 94,95, 96, 96, 97.这组数据的众数和中位数分别是( ). A .95,95B .96,96C .95,96D .96,952.某校要从甲、乙、丙、丁四名学生中选出一名学生参加数学竞赛,对这四名学生进行了10次数学测试,经过数据分析4人的平均成绩均为95分,215s =甲,217.2s =乙,28.5s =丙,221.7s =丁.则应该选择( )A .甲B .乙C .丙D .丁3.一组数据1,3,2-,3,4的纵数是( ) A .1B .2-C .12D .34.一组数据1,2,3,5,4,3中的中位数和众数分别是( ) A .3,3B .5,3C .4,3D .5,105.下表是今年3月12日植树节我县6个乡镇最高气温近似值(℃)的统计结果:则这几个乡镇该日最高气温近似值的众数和中位数分别是( ) A .6,8B .8,7C .8,8D .8,66.某中学随机抽取了该校50名学生,他们的年龄如表所示:这50名学生年龄的众数和中位数分别是( ). A .13岁、14岁B .14岁,14岁C .14岁,13岁D .14岁,15岁7.某篮球队12名队员的年龄统计如图所示,则该队队员年龄的众数和中位数分别是( )A.16,15 B.15,15.5 C.15,17 D.15,168.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为x=甲82分,x乙=82分,2s=甲245分2,2s=乙190分2.那么成绩较为整齐的是 ( )A.甲班B.乙班C.两班一样整齐D.无法确定9.某地连续10天的最高气温统计如下表:则这组数据的中位数和平均数分别为()A.24.5,24.6 B.25,26 C.26,25 D.24,2610.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数 B.中位数 C.众数 D.方差二、填空题11.在本赛季CBA比赛中,某运动员最后六场的得分情况如下:17,15,21,28,12,19,则这组数据的极差为_______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.13.明明成绩为78分.全班共30人,其他同学的成绩为1个100分,4个90分, 22个80分,以及1个2分和1个10分.明明计算出全班的平均分为77分,他认为自己这次成绩在班上处于“中上水平”.产生错觉的原因是_________易受极端数值的影响.14.一组数据为1,2,3,4,5,6,则这组数据的中位数是______.15.有一组互不相等的数据(每个数都是整数):2,4,6,a ,8,它们的中位数是6,则整数a 是_____.16.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是22220.65,0.55,0.50,0.45S S S S ====甲乙丁丙,则这5次测试成绩最稳定的是_________同学.17.现要从甲、乙两个队员中挑选出一名队员参加射击比赛,两人各进行20次的射击测试,得到的平均数=x x 甲乙,方差22s s <甲乙,若要选拔出成绩比较稳定的队员参赛,则应选择 .18.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是S 甲2,S 乙2,且S 甲2<S乙2,则两个队的队员的身高较整齐的是_____.19.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如下面的条形图所示.这15名同学进球数的众数是________.20.我市组织万人跳绳大赛,某社区对13-16岁年龄组的参赛人数统计如下表:则这年龄段参赛选手年龄的众数是______岁,中位数是_______岁.三、解答题21.某次歌唱比赛,三名选手的成绩如下表所示.(1)若根据三项测试的平均成绩,确定名次,则谁是第一名?(2)若组委会决定将歌唱表演、才艺表演、音乐知识三项测试得分按4︰3︰1的比例确定名次,此时谁是第一名?22.如果一组数据3,2,2,4,x的平均数为3.(1)求x的值;(2)求这组数据的众数.23.停课不停学,疫情期间,八(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:(1)直接写出打卡次数的众数和中位数;(2)求所有同学打卡次数的平均数;(3)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励,请你根据(1)、(2)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由.24.甲、乙两个学习小组各4名学生的数学测验成绩(单位:分)如下:甲组:86,82,87,85;乙组:85,81,85,89.分别计算这两组数据的方差,并说明哪个学习小组学生的成绩比较整齐.25.一次演讲比赛中,7位评委现场给一位选手打分,评分情况如下表:(1)如果以平均分为标准,则最后得分为______;(2)如果去掉一个最高分和一个最低分,以余下得分的平均分为标准,则最后得分为______; (3)如果以中位数为标准,则得分为______; (4)如果以众数为标准,则得分为______.26.长沙市环保部门随机选取甲、乙两个区进行空气质量监测.过程如下,请补充完整. (1)(收集数据)从2018年3月初开始,连续一年对两区的空气质量进行监测,将每个月所有天数的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:甲区:110 100 95 60 90 85 80 50 50 50 45 55 乙区:100 105 90 80 90 85 90 60 90 45 60 40 整理、描述数据 按如下表整理、描述这两区空气污染指数的数据:(说明:空气污染指数50≤时,空气质量为优;50<空气污染指数100≤时,空气质量为良;100<空气污染指数150≤时,空气质量为轻微污染.)(2)(分析数据)两区的空气污染指数的平均数,中位数,众数如下表所示(表中数据均保留一位小数):(3)(得出结论)a.估计在接下来的200天甲区空气质量为优的天数为_________天(结果保留整数);b.可以推断出________(填甲、乙)区这一年中环境状况比较好,理由为________________.(至少从两个不同的角度说明推断的合理性)27.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?28.某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 6236 15 51 45 40 42 40 32 43 3634 53 38 40 39 32 45 40 50 4540 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.(2)填空:在这个问题中,总体是_____,样本是_____.由统计结果分析的,这组数据的平均数是38.35(分),众数是_____,中位数是______.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?参考答案1.D2.C3.D4.A5.C6.C7.D8.B9.A10.D11.1612.mx ny m n++.13.平均数14.3.515.716.丁17.甲.18.甲19.9.20.14 1521.(1)A是第一名;(2)B是第一名.22.(1)4x=;(2)2和4.23.(1)众数:8次,中位数:8.5次;(2)10次;(3)可以选择中位数,即超过9次(含9次)的获得奖励,见解析24.甲学习小组学生的成绩比较整齐.25.(1)9.3分;(2)9.4分;(3)9.5分;(4)9.6分26.(1)2,9,1;(2)70,90;(3)a.67;b.甲;甲区的平均数低于乙区,中位数低于乙区,故甲区的环境状况比较好27.选择乙.28.(1)补全频率分布表和频率分布直方图,见解析;(2)总体是全校400名学生参加课外锻炼的时间,样本是40名学生一周内平均每天参加课外锻炼的时间;众数是40,中位数是40;(3)用平均数、中位数、或众数描述该校400名学生参加课外锻炼时间的总体情况都比较合适.。

【创优单元测评卷】高中人教A版数学必修1单元测试:第一章集合与函数概念(二)B卷(含答案解析)

高中同步创优单元测评B 卷数学班级:________姓名:________得分: ________第一章会合与函数观点(二 )( 函数的观点与基天性质)名校好题·能力卷 ]( 时间: 120分钟满分: 150 分 )第Ⅰ卷( 选择题共60分)一、选择题 (本大题共12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下四组函数中,表示同一函数的是()A . y= x- 1 与 y=-2B . y= x- 1与 y=x- 1 x- 12C. y= 4lg x 与 y=2lg xxD . y= lg x - 2 与 y= lg1002A 中的元素个数最2.已知 f: x→x是会合 A 到会合 B= {0,1,4} 的一个映照,则会合多有()A.3 个B.4 个C.5 个D.6 个x+1的定义域是 ()3.函数 f(x) =x-1A .- 1,1)B .- 1,1)∪ (1,+∞)C.- 1,+∞)D. (1,+∞)4.函数 y= 2-- x2+ 4x的值域是 ()A .- 2,2]B .1,2]C. 0,2]D.- 2, 2]5.已知 f(x) 的图象如图,则f(x) 的分析式为 ()1, 0≤ x≤1 A.f(x)=- x- 2, 1<x≤2-1, 0≤x≤1B . f(x) =x+2, 1<x ≤2-1, 0≤x≤1 C. f(x) =x-2, 1<x ≤2-1, 0≤x≤1 D.f(x)=- x+ 2, 1<x≤26.定义两种运算: a⊕b=a2- b2,=-2,则函数 f(x) =2⊕ x的-2分析式为 ()A . f(x) =4- x2, x∈- 2,0)∪ (0,2]xB . f(x) =x2- 4, x∈ (-∞,- 2]∪ 2,+∞) xx2- 4C. f(x) =-,x∈ (-∞,-2]∪ 2,+∞)x4- x2D . f(x) =-,x∈-2,0)∪ (0,2]x7.函数 f(x) =1- x 的图象对于 () xA .坐标原点对称B . x 轴对称C. y 轴对称D.直线 y= x 对称8.设 f(x) 是定义在- 6,6] 上的偶函数,且f(4)>f(1) ,则以下各式必定建立的是 () A . f(0)<f(6) B .f(4)>f(3)C. f(2)>f(0)D. f( -1)<f(4)9.若奇函数 f(x) 在 1,3] 上为增函数,且有最小值0,则它在- 3,- 1]上 () A .是减函数,有最小值0 B .是增函数,有最小值0 C.是减函数,有最大值0 D .是增函数,有最大值010.已知函数f(x)a x,满足对任意 x1≠x2,都有=-+,1 -2)<0 建立,则 a 的取值范围是 (x1- x21A.0,4 B .(0,1)1C.4, 1D. (0,3)11.若 f(x) 是 R 上的减函数,且f(x) 的图象经过点A(0,4) 和点 B(3 ,- 2),则当不等式|f(x + t)- 1|<3 的解集为 (- 1,2)时, t 的值为 ()A .0B.- 1C. 1D. 212.已知函数y=f(x) 知足:① y= f(x + 1)是偶函数;②在 1,+∞)上为增函数.若 x1 <0,x2>0,且 x1+ x2<-2,则 f( - x1)与 f( -x2 )的大小关系是 ()A . f( - x1)>f( -x2)B . f(- x1)<f( - x2)C. f( - x1)= f(- x2 ) D .没法确立第Ⅱ卷(非选择题共 90分 )二、填空题 (本大题共 4 个小题,每题 5 分,共 20 分,请把正确答案填在题中横线上 )13.若函数f(x) = ax7+bx- 2,且 f(2 014) = 10,则 f( - 2 014)的值为 ________.ax+1在 x∈ (- 2,+∞)上单一递减,则实数 a 的取值范围是 ________.14.若函数 f(x) =x+2x+3,记 f(1) + f(2) +f(4) + f(8) + f(16) =m,f1+ f1+ f1+ f1 15.已知函数 f(x) =x+124816= n,则 m+ n= ________.16.设 a 为常数且 a<0, y= f(x) 是定义在 R 上的奇函数,当x<0 时, f(x) = x+a2-2.x 2a 的取值范围为 ________.若 f(x) ≥a-1 对全部 x≥0都建立,则三、解答题 (本大题共 6 个小题,共70 分,解答时应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )(1)已知 f(x - 2)= 3x- 5,求 f(x) ;(2)若 f(f(f(x))) = 27x + 26,求一次函数 f(x) 的分析式.18. (本小题满分 12 分 )已知 f(x) =1, x ∈ 2,6] .x - 1(1) 证明: f(x) 是定义域上的减函数;(2) 求 f(x) 的最大值和最小值.19. (本小题满分 12分)某企业生产一种电子仪器的固定成本为20 000 元,每生产一台仪器需增添投入100 元,1 2,0≤x ≤400,已知总利润知足函数:R(x) = 400x - x2此中 x 是仪器的月产量.80 000, x>400 ,(1) 将利润 f(x) 表示为月产量 x 的函数;(2) 当月产量 x 为什么值时,企业所赢利润最大?最大利润是多少元?(总利润=总成本+利润 )20. (本小题满分12 分 )已知函数f(x) = x2+ 2ax+ 2, x∈- 5,5].(1)当 a=- 1 时,求函数的最大值和最小值;(2) 若 y= f(x) 在区间- 5,5]上是单一函数,务实数 a 的取值范围.21. (本小题满分12 分 )已知二次函数f(x) = ax2+ bx(a, b∈ R),若 f(1)=- 1 且函数 f(x) 的图象对于直线x=1对称.(1)求 a, b 的值;(2)若函数 f(x) 在 k, k+ 1](k ≥上1)的最大值为 8,务实数 k 的值.22. (本小题满分12分)7已知二次函数f(x) 的图象过点 (0,4),对随意 x 知足 f(3- x)= f(x) ,且有最小值.4(1)求 f(x) 的分析式;(2)求函数 h(x) = f(x) -(2t -3)x 在区间 0,1] 上的最小值,此中 t∈ R;(3)在区间- 1,3] 上, y= f(x) 的图象恒在函数 y= 2x+ m 的图象上方,试确立实数m 的范围.详解答案第一章会合与函数观点 ( 二 ) (函数的观点与基天性质)名校好题·能力卷 ]1.D分析:∵ y= x- 1与 y=-2= |x- 1|的对应关系不一样,∴它们不是同一函数;y=x- 1(x ≥1)与 y=x-1(x>1) 的定义域不一样,∴它们不是同一函数;又 y= 4lg x(x>0)x-1与 y= 2lg x 2(x ≠ 0)的定义域不一样,所以它们也不是同一函数,而 y= lg x - 2(x>0) 与 y= lg x=100 lg x - 2(x>0) 有同样的定义域、值域与对应关系,所以它们是同一函数.2. C分析:令 x2= 0,1,4,解得 x=0,±1,±2.应选 C.3. B分析:由x+ 1≥0,解得 x≥- 1,且 x≠1. x-1≠0,4. C分析:令t=- x2+4x, x∈ 0,4] ,∴ t∈ 0,4].又∵ y1= x, x∈ 0,+∞)是增函数∴t∈0,2] ,- t ∈- 2,0] ,∴ y∈ 0,2] .应选 C.5. C 分析:当 0≤ x≤1时, f(x) =- 1;当 1<x ≤2时,设 f(x) = kx+ b(k ≠ 0),把点(1,- 1, 0≤x≤1,- 1), (2,0)代入 f(x) = kx +b(k ≠0),则 f(x) = x- 2.所以 f(x) =应选 C.x- 2,1<x ≤ 2.2⊕ x=22- x24-x24- x2≥0,得-6.D分析: f(x) ==|x- 2|- 2.由-2-2- 2|x- 2|- 2≠0,2≤ x≤2且 x≠ 0∴. f(x) =-4- x2 x.7.A11- x=- f(x) ,分析:函数 f(x) 的定义域对于原点对称,又∵ f( - x)=-x+ x=-x∴ f(x) 为奇函数,其图象对于坐标原点对称.8.D分析:∵ f(x) 是定义在-6,6]上的偶函数,∴ f( - 1)= f(1) .又 f(4)>f(1),f(4)>f( -1).9. D分析:因为奇函数f(x) 在 1,3] 上为增函数,且有最小值0,所以 f(x) 在- 3,-1]上是增函数,且有最大值 0.x,a知足对随意 x≠x,都有10 . A 分析:因为函数f(x) =+12-1 -0<a<1,1 2a- 3<0,x1- x2<0 建立,所以该函数为R 上的减函数,所以解得 0<a≤0,4. 4a≤a解题技巧:此题主要考察了分段函数的单一性,解决此题的重点是利用好该函数为R上的减函数这一条件.应特别注意隐含条件“a≥ 4a.”11. C 分析:由不等式 |f(x+ t) - 1|<3,得- 3< f(x + t)- 1< 3,即- 2< f(x + t)< 4.又因为 f(x) 的图象经过点 A(0,4) 和点 B(3,- 2),所以 f(0)= 4, f(3) =- 2,所以 f(3) <f(x + t)<f(0) .又 f(x) 在 R 上为减函数,则 3>x+ t> 0,即- t<x< 3- t,解集为 (- t,3- t).∵不等式的解集为 (- 1,2),∴- t=- 1,3- t= 2,解得 t= 1.应选 C.12.A 分析:由 y= f(x + 1)是偶函数且把 y= f(x + 1)的图象向右平移 1 个单位可得函数 y=f(x) 的图象,所以函数 y= f(x) 的图象对于 x= 1 对称,即 f(2+ x)= f( - x).因为 x1<0,x2>0,且 x1+x2<- 2,所以 2<2+ x2<- x1.因为函数在 1,+∞)上为增函数,所以 f(2+ x2)<f( -x1),即 f( - x1)>f( - x2),应选 A.13.- 14分析:设g(x)=ax7+bx,则g(x)是奇函数,g(-2 014)=-g(2 014).∵ f(2 014)= 10 且 f(2 014) =g(2 014) - 2,∴ g(2 014) = 12,∴ g(- 2 014)=- 12,∴ f(- 2 014)= g(-2 014)- 2,∴ f( - 2 014)=- 14.1分析: f(x) =ax+1= a+1-2a1在 x∈ (-2,+∞)上是减函数,∴ 114. a<2x+ 2x+ 2 .∵y=x+ 2- 2a>0,∴ a<1 . 215. 18分析:因为函数x+3,所以 f1= 1+ 3x f(x) =x+1x x+ 1.又因为 f(x) + f 1=+=4,x+ 1x1111f(1) + f(2) + f(4) + f(8) + f(16) + f 2+ f4+ f 8+ f 161111= f(1) + f(2) + f 2+ f(4) + f 4+ f(8) + f8+ f(16) +f 16= f(1) + 4×4= 18,所以 m+ n=18.解题技巧:此题主要考察了学生的察看、概括、推理的能力,解决此题的重点是发掘出题目中隐含的规律 f(x) + f 1=4. x16.- 1≤ a<0 分析:当 x= 0时, f(x) = 0,则2- 1,解得- 1≤a≤1,所以- 1≤a<0. 0≥a当 x>0 时,- x<0 ,f( - x)=- x+a2- 2,则 f(x) =- f( - x)= x+a2+2.- x x由对数函数的图象可知,当x= a2=|a|=- a 时,有 f(x) min=- 2a+ 2,22所以- 2a+2≥a- 1,即 a + 2a- 3≤0,解得- 3≤a≤又1. a<0,所以- 3≤a<0.综上所述,-1≤a<0.17.解: (1)令 t=x- 2,则 x=t+2,t∈R,由已知有f(t) = 3(t+ 2)- 5= 3t+ 1,故 f(x)=3x + 1.(2)设 f(x) = ax+ b(a ≠,0) f(f(x)) = a2x+ ab+ b,f(f(f(x)))232= a(a x+ ab+ b)+ b=a x+a b+ ab+ b,a3= 27,∴a2b+ ab+b= 26,解得 a= 3, b= 2.则 f(x) = 3x+ 2.18. (1)证明:设2≤x1<x 2≤6,则 f(x 1)-f(x 2)=1- 1 =x2- x1,x1- 1x2- 11-2-因为 x1- 1>0, x2- 1>0 ,x2- x1>0,所以 f(x 1)- f(x 2)>0 ,即 f(x 1 )>f(x 2) .所以 f(x) 是定义域上的减函数.1(2) 由(1) 的结论可得,f(x) min= f(6) =5, f(x) max= f(2) = 1.19.解: (1) 当 0≤ x≤ 400时,12- 20 000=-12+ 300x- 20 000.f(x) = 400x- x - 100x2x2当 x>400 时, f(x) = 80 000-100x - 20 000= 60 000- 100x,-1x2+ 300x- 20 000, 0≤x≤400,所以 f(x) =260000- 100x,x>400.(2)当 0≤ x≤ 400时,f(x) =-1212;2x+ 300x- 20 000=- (x- 300)+ 25 0002当 x= 300 时, f(x) max= 25 000;当 x>400 时,f(x) = 60 000- 100x<f(400) =20 000<25 000 ;所以当 x=300 时, f(x) max= 25 000.故当月产量 x 为 300 台时,企业赢利润最大,最大利润为25 000 元.20.解: (1) 当 a=- 1 时, f(x) = x2- 2x+ 2= (x- 1)2+ 1.又因为 x∈- 5,5] .所以函数的最大值为37,最小值为 1.(2)若 y= f(x) 在区间- 5,5]上是单一函数,则有- a≤- 5 或- a≥5解得 a≤- 5 或 a≥5.解题技巧:此题主要考察了二次函数在给定区间上的最值与单一性.解决此题的重点是确立对称轴和区间端点的关系.注意分类议论.b21.解: (1) 由题意可得 f(1) = a + b =- 1 且- = 1, 解得 a = 1, b =- 2.(2)f(x) = x 2- 2x = (x -1) 2-1.因为 k ≥1,所以 f(x) 在 k ,k + 1]上单一递加,所以 f(x) max = f(k + 1)= (k + 1)2-2(k + 1)= 8,解得 k = ±3.又 k ≥1,所以 k =3.22.解: (1) 由题知二次函数图象的对称轴为3,又最小值是 7,x = 24则可设 f(x) = a x - 3 2 7(a ≠ 0),2+4 又图象过点 (0,4),则 a 0-32+ 7= 4,解得 a = 1.243 272∴ f(x) = x - 2 +4= x - 3x + 4.(2)h(x) = f(x) - (2t -3)x = x 2- 2tx + 4= (x -t) 2+ 4- t 2,其对称轴 x = t.① t ≤0时,函数 h(x) 在 0,1]上单一递加,最小值为 h(0)= 4;②当 0<t<1 时,函数 h(x) 的最小值为 h(t)= 4- t 2;③当 t ≥1时,函数 h(x) 在 0,1] 上单一递减,最小值为h(1) = 5- 2t ,所以 h(x) min =4, t ≤0,4- t 2, 0<t<1 ,5- 2t , t ≥ 1.(3) 由已知: f(x)>2x + m 对 x ∈- 1,3] 恒建立,∴ m<x 2- 5x + 4 对 x ∈- 1,3]恒建立.∴ m<(x 2-5x + 4)min (x ∈- 1,3]) .29 ∵ g(x) = x - 5x + 4 在 x ∈- 1,3] 上的最小值为- 4,∴ m< -9.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届人教A 版(文科数学) 概率与统计的综合应用 单元测试
一、选择题
1.(2017泰安模拟)已知变量x 与y 之间的回归直线方程为 ^
=-3+2x ,若
x i =17,则
y i 的值为( ).
A.3
B.4
C.0.4
D.40
【解析】依题意 =
=1.7,而直线 ^
=-3+2x 一定经过样本点的中心( , ),所以 =-3+2 =-3+2×1.7=0.4,所以
y i =0.4×10=4.
【答案】B
2.(2013年全国Ⅰ卷)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).
A.
B.
C.
D.
【解析】从1,2,3,4中任取2个不同的数,有(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情况.而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4),(3,1),(4,2),共4种情况,所以取出的2个数之差的绝对值为2的概率为 =
.
【答案】B
3.(2017唐山模拟)通过随机询问110名大 生是否爱好某项运动,得到如下的列联表:
由K 2
=
-
,
算得K 2
的观测值k=
≈7.8.
附表:
参照附表,得到的正确结论是().
A.在犯错误的概率不超过0.1 的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1 的前提下,认为“爱好该项运动与性别无关”
C.有99 以上的把握认为“爱好该项运动与性别有关”
D.有99 以上的把握认为“爱好该项运动与性别无关”
【解析】根据独立性检验的定义,由k≈7.8>6.635,可知在犯错误的概率不超过0.01的前提下,即有99 以上的把握认为“爱好该项运动与性别有关”,故选C.
【答案】C
4.(2017枣庄模拟)为防止部分生考试时用搜题软件作弊,命题组指派5名教师对数卷的选择题、填空题和解答题这三种题型进行改编,且每名教师只改编一种题型,则每种题型至少指派一名教师的不同分派方法种数为().
A.150
B.180
C.200
D.280
【解析】根据题意,5个人可以有3,1,1和2,2,1两种分组方法,所以方法数为=150.
【答案】A
5.(2017济南模拟)定积分(2x+e x)d x=e a,则展开式中的常数项为().
A.1
B.-1
C.20
D.-20
【解析】(2x+e x)d x=(x2+e x)=(1+e)-(0+e0)=e=e a,所以a=1.故展开式的通项为
T r+1=x6-r·=a r x6-2r,令6-2r=0,即r=3,所以常数项为T4=a3=20.
【答案】C
6.(2017南昌二模)从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=().
A. B. C. D.
【解析】P(A)===,P(AB)==.由条件概率计算公式,得P(B|A)===.
【答案】B
7.(2017滨州模拟)甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束.若甲每局比赛获胜的概率均为,则甲以3∶1的比分获胜的概率为().
A. B. C. D.
【解析】前三局中甲获胜2局,第四局甲胜,则P=××=.
【答案】A
8.(2013年陕西卷)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是().
A.1-
B.-1
C.2-
D.
【解析】所求概率为P=
===1-.
矩形
【答案】A
二、填空题
9.(2017东营模拟)某工厂为了了解一批产品的净重(单位:克)情况,从中随机抽测了200件产品的净重,所得数据均在区间[96,106上,其频率分布直方图如图所示.已知各个小矩形按从低到高的高度依次构成一个等差数列,则在抽测的200件产品中,净重在区间[98,102)上的产品件数是.
【解析】由题意可知0.050,a,b,c,d构成等差数列,设公差为t.
由小长方形的面积之和为1可得(0.050+a+b+c+d)×2=1,
即0.050+a+b+c+d=0.5,
所以5×0.050+10t=0.5,
解得t=0.025.
所以b=0.050+0.025×2=0.10,
d=0.050+0.025×4=0.150.
所以净重在区间[98,102)上的频率为(b+d)×2=(0.10+0.150)×2=0.5.
净重在区间[98,102)上的产品数为 200×0.5=100.
【答案】100
10.(2017东莞摸底)已知随机变量X服从正态分布N(2,1).若P(1≤X≤3)=0.6826,则P(X>3)=.
【解析】因为随机变量X服从正态分布N(2,1),所以P(X>3)=P(X<1),因为P(X<1)+P(1≤X≤3)+P(X>3)=1,所
以P(X>3)=(1-0.6826)=0.1587.
【答案】0.1587
11.(2013年上海卷)设非零常数d是等差数列x1,x2,x3,...,x19的公差,随机变量ξ等可能地取值x1,x2,x3, (x19)
则方差Dξ=.
【解析】由等差数列的性质,===x10.
∴Dξ=[(x1-)2+(x2-)2+…+(x19-)2
=d2(12+22+32+…+92)=30d2.
【答案】30d2
12.(2017德州模拟)用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(请用数字作答)
【解析】①当数字4出现在第二位时,则第1位必为数字1,3,5中的一个数字,所以满足条件的五位数有=12个;②当数字4出现在第三位时,则第一位和第二位为数字1,3,5中的两个数字或第四位和第五位为数字1,3,5中的两个数字,所以满足条件的五位数有2=24个;③当数字4出现在第四位时,则第五位必为数字1,3,5中的一个数字,所以满足条件的五位数有=12个.综上可知,满足条件的不同五位数有
12+24+12=48个.
【答案】48
三、解答题
13.(2017张家口模拟)某商场为了了解顾客的购物信息,随机地在商场收集了100位顾客购物的相关数据,整理如下:
统计结果显示:100位顾客中购物款不低于100元的顾客占60 .据统计,该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:将频率视为概率)
(1)试确定m,n的值,并估计该商场每日应准备纪念品的数量;
(2)现有4人去该商场购物,求获得纪念品的人数ξ的分布列与数期望.
【解析】(1)由已知,100位顾客中购物款不低于100元的顾客有n+40=100×60 ,即n=20,
则m=100-(20+30+20+10)=20.
该商场每日应准备纪念品的数量大约为5000×=3000件.
(2)由(1)可知1人购物获得纪念品的概率P==.
故4人购物获得纪念品的人数ξ服从二项分布B,
则P(ξ=0)==,
P(ξ=1)==,
P(ξ=2)==,
P(ξ=3)==,
P(ξ=4)==.
故ξ的分布列为
所以ξ的数期望为E(ξ)=0×+1×+2×+3×+4×=.。

相关文档
最新文档