最新初中数学模型解题法名师资料合集

最新初中数学模型解题法名师资料合集
最新初中数学模型解题法名师资料合集

初中数学模型解题法

解答题

1. (2001江苏苏州6分)如图,已知AB是半圆O的直径,AP为过点A的半圆的切线。在上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C 作CE⊥AB,垂足为E.连接BD,交CE于点F。

(1)当点C为的中点时(如图1),求证:CF=EF;

(2)当点C不是的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论。

【答案】解:(1)证明:∵DA是切线,AB为直径,∴DA⊥AB。

∵点C是的中点,且CE⊥AB,∴点E为半圆的圆心。

又∵DC是切线,∴DC⊥EC。

又∵CE⊥AB,∴四边形DAEC是矩形。

∴CD∥AO,CD=AD。∴,即EF= AD= EC。

∴F为EC的中点,CF=EF。

(2)CF=EF保持不变。证明如下:

如图,连接BC,并延长BC交AP于G点,连接AC,

∵AD、DC是半圆O的切线,∴DC=DA。

∴∠DAC=∠DCA。

∵AB是直径,∴∠ACB=90°。∴∠ACG=90°。

∴∠DGC+∠DAC=∠DCA+∠DCG=90°。

∴∠DGC=∠DCG。

∴在△GDC中,GD=DC。

∵DC=DA,∴GD=DA。

∵AP是半圆O的切线,∴AP⊥AB。

又∵CE⊥AB,∴CE∥AP。∴△BCF∽△BGD,△BEF∽△BAD。

∴。

∵GD=AD,∴CF=EF。

【考点】探究型,圆的综合题,切线的性质,矩形的判定和性质,平行线分线段成比例定理,等腰三角形的判定,相似三角形的判定和性质。

【分析】(1)由题意得DA⊥AB,点E为半圆的圆心,DC⊥EC,可得四边形DAEC是矩形,即可得出,即可得EF与EC的关系,可知CF=EF。

(2)连接BC,并延长BC交AP于G点,连接AC,由切线长定理可得DC=DA,∠DAC=∠DCA,由角度代换关系可得出∠DGC=∠DCG,即可得GD=DC=DA,由已知可得CE∥AP,所以,即可知CF=EF。

2. (2001江苏苏州7分)已知一个三角形纸片ABC,面积为25,BC的长为10,∠B、∠C都为锐角,M为AB边上的一动点(M与A、B不重合),过点M作MN∥BC交AC于点N,设MN=x。

(1)用x表示△AMN的面积;

(2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AM、AN落在四边形BCNM 所在的平面内),设点A落在平面BCNM内的点A′,△A′MN与四边形BCNM重叠部分的面积为y。

①用的代数式表示y,并写出x的取值范围;

②当x为何值时,重叠部分的面积y最大,最大为多少?

【答案】解:(1)∵MN∥BC,∴△AMN∽△ABC。∴。

∴,即。

(2)①当点A′落在四边形BCMN内或BC边上时,

(0<x≤5)。

当点A′在四边形BCMN外,

连接AA′与MN交于点G与BC交于点F,

∵MN∥BC,∴,即。

∴AG= x。∴AA′=2AG=x。∴A′F=x-5。

∴,即。

∴。

∴重合部分的面积。

综上所述,重合部分的面积。

②∵

∴当x= 时,y最大,最大值为y最大= 。

【考点】翻折变换(折叠问题),相似三角形的判定和性质,二次函数的最值。

【分析】(1)根据已知条件求出△AMN∽△ABC,再根据面积比等于相似比的平方的性质即可求出△AMN的面积。

(2)根据已知条件分两种情况进行讨论,当点A′落在四边形BCMN内或BC边上时和当点A′在四边形BCMN外时进行讨论,第一种情况很容易求出,第二种情况进行画图,连接AA′与MN交于点G与BC交于点F,再根据面积比等于相似比的平方的性质求出即可.再根据求出的式子,即可求出重叠部分的面积y的最大值来。

3. (江苏省苏州市2002年7分)已知:⊙与⊙外切于点,过点的直线分别交⊙、⊙于点、,⊙的切线交⊙于点、,为⊙的弦,

(1)如图(1),设弦交于点,求证:;

(2)如图(2),当弦绕点旋转,弦的延长线交直线B 于点时,试问:是否仍然成立?证明你的结论。

【答案】解:(1)证明:连结,过点作⊙与⊙的公切线。

∴。

又∵是⊙的切线,∴。

又∵,∴。

又∵,∴。

∴,即。

(2)仍成立。证明如下:

连结,过点作⊙和⊙的公切线。

∵是⊙的切线,∴。∴。

∴。

又∵,∴。

又∵,∴。

∴,即。

【考点】相切两圆切线的性质,弦切角定理,切线长定理,等腰三角形的性质,对顶角的性质,相似三角形的判定和性质。

【分析】(1)连结,过点作⊙与⊙的公切线。根据弦切角定理可得,由也是⊙的切

线,根据切线长定理可得,从而根据等腰三角形等边对等角的性质,得到,由对顶角相等的性质,得到。又,从而,根据相似三角形的性质即可证明。

(2)同(1)可以证明。

4.(江苏省苏州市2002年7分)如图,梯形OABC中,O为直角坐标系的原点,A、B、C 的坐标分别为(14,0)、(14,3)、(4,3)。点P、Q同时从原点出发,分别作匀速运动。其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动。当这两点中有一点到达自己的终点时,另一点也停止运动。

(1)设从出发起运动了秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q 在OC上或在CB上时的坐标(用含的代数式表示,不要求写出的取值范围);

(2)设从出发起运动了秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半。

①试用含的代数式表示这时点Q所经过的路程和它的速度;

②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的的值和P、Q的坐标;如不可能,请说明理由。

【答案】解:(1)当点Q在OC上时,如图,过点C作CE⊥OA于点E,过点Q作QF⊥OA于点F。

依题意,有OE=4,EC=3,OC=5,OQ=2 。

由△OCE∽△OQF得,

即。

∴。∴当点Q在OC上时,点Q的坐标为。

当点Q在CB上时,如图,过点C作CM⊥OA于点M,过点Q作QN⊥OA于点N。

∵CQ=2 -5,∴OM=4+2 -5=2 -1。

又MQ=3,∴当点Q在CB上时,点Q的坐标为()。

(2)①∵点P所经过的路程为,点Q所经过的路程为OQ,且点P与点Q 所经过的路程之和恰好为梯形OABC的周长的一半,

∴+OQ= (14+3+10+5),即OQ=16-。

∴点Q所经过的路程为16-,速度为。

②不能。理由如下:

当Q点在OC上时,如图,过点Q作QF⊥OA于点F。

则OP= ,QF= 。

∴。

又∵,∴令,解之,得。

∵当时,,这时点Q不在OC上,故舍去;

当时,,这时点Q不在OC上,故舍去。

∴当Q点在OC上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分。

当Q在CB上时,CQ=16--5=11-,

∴。

∵,

∴当Q点在CB上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分。

综上所述,这时PQ不可能同时平分梯形OABC的面积。

【考点】动点问题,勾股定理,相似三角形的判定和性质。

【分析】(1)当点Q在OC上时,作直角三角形OCE和OQF,由二者相似即可求出此时点

Q的坐标。当点Q在CB上时,过点C作CM⊥OA于点M,过点Q作QN⊥OA于点N,即可得出OM=4+2 -5=2 -1,从而求出此时点Q的坐标。

(2)①由点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,列出等式,+OQ= (14+3+10+5),即可求出点Q所经过的路程。用路程÷时间即可求得速度。

②分Q点在OC上和Q点在OC上,分别讨论即可得出结论。

5. (江苏省苏州市2003年7分)如图1,⊙O的直径为AB,过半径OA的中点G作弦CE ⊥AB,在上取一点D,分别作直线CD、ED,交直线AB于点F、M。

(1)求∠COA和∠FDM的度数;

(2)求证:△FDM∽△COM;

(3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直

线AB于点F、M。试判断:此时是否仍有△FDM∽△COM?证明你的结论。

【答案】解:(1)∵AB为直径,CE⊥AB,∴,CG=EG。

在Rt△COG中,∵OG= OC,∴∠OCG=30°。∴∠COA=60°。

又∵∠CDE的度数= 的度数= 的度数=∠COA的度数=60°,

∴∠FDM=180°-∠CDE=120°。

(2)证明:∵∠COM=180°-∠COA=120°,∴∠COM=∠FDM。

在Rt△CGM和Rt△EGM中,,∴Rt△CGM≌Rt△EGM(HL)。

∴∠GMC=∠GME。

又∵∠DMF=∠GME,∴∠GMC=∠DMF。∴△FDM∽△COM。(3)结论仍成立。证明如下:

∵∠EDC的度数= 的度数= 的度数=∠COA的度数,

∴∠FDM=180°-∠COA=∠COM。

∵AB为直径,∴CE⊥AB。

在Rt△CGM和Rt△EGM中,∴Rt△CGM≌Rt△EGM(HL)。

∴∠GMC=∠GME。∴△FDM∽△COM。

【考点】圆周角定理,锐角三角函数,特殊角的三角函数值,线段垂直平分线的性质,直角三角形两锐角的关系,平角定义,直角三角形全等的判定和性质,垂径定理,相似三角形的判定。

【分析】(1)由于CG⊥OA,根据垂径定理可得出,,那么根据圆周角定理可得出∠CDE=∠COA,在Rt△COG中,可根据OG是半径的一半得出∠AOC是60°,那么就能得出∠FDM=180°-∠CDE=120°。

(2)在(1)中根据垂径定理得出OA是CE的垂直平分线,那么△CMG和△BMG就应该全等,可得出∠CMA=∠EMG,也就可得出∠CMO=∠FMD,在(1)中已经证得∠AOC=∠EDC=60°,那么∠COM=∠MDF,因此两三角形相似。

(3)可按(2)的方法得出∠DMF=∠CMO,关键是再找出一组对应角相等,还是用垂径定理来求,根据垂径定理我们可得出,那么∠AOC=∠EDC,根据等角的余角相等即可得出∠COM=∠FDM,由此可证出两三角形相似。

6. (江苏省苏州市2003年7分)OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6。

(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,记为E,求折痕CG所在直线的解析式。

(2)如图2,在OC上选取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为。

①求折痕AD所在直线的解析式;

②再作F∥AB,交AD于点F,若抛物线过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数。

(3)如图3,一般地,在OC、OA上选取适当的点,使纸片沿翻折后,点O落在BC边上,记为。请你猜想:折痕所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想。

【答案】解:(1)由折叠法知,四边形OCEG是正方形,∴OG=OC=6。∴G(6,0),C(0,6)。

设直线CG的解析式为y=kx+b,则,解得。

∴直线CG的解析式为:y=-x+6。

(2)①在Rt△ABE'中,。∴CE′=2。

设OD=x,则DE'=x,CD=6-x,

在Rt△DCE'中,,解得。则D(0,)。

设AD所在直线的解析式为y=k'x+,由于它过A(10,0),∴k'= 。

∴AD所在直线的解析式为。

②∵E'F∥AB,E'(2,6),∴设F(2,yF)。

∵F在AD上,∴。∴F(2,)。

又∵点F在抛物线上,∴,解得h=3。

∴抛物线的解析式为。

联立和得,即。

∵△=0,∴直线AD与抛物线只有一个交点(2,)。(3)例如可以猜想:(ⅰ)折痕所在直线与抛物线只有一个交点;

或(ⅱ)若作E''F''∥AB,交D'G'于F',则F'在抛物线上。

验证:(ⅰ)在图1中,折痕为CG,将y=-x+6代入,

得,即。

∵△=0,∴折痕CG所在直线与抛物线只有一个交点。

或(ⅱ)在图1中,D'即C,E''即E,G'即G,交点F'也为G(6,0),

∴当x=6时,。∴G点在这条抛物线上。

【考点】二次函数综合题,折叠的性质,正方形的判定和性质,待定系数法,曲线点的坐标与方程的关系,勾股定理,一元二次方程根的判别式。

【分析】(1)根据折叠的性质可知:四边形OGEC是个正方形,因此OC=OG=6,据此可得出G点的坐标,然后用待定系数法即可求出直线CG的解析式。

(2)①求出D的坐标,根据折叠的性质可知AE′=OA,那么可在Rt△ABE′中求出BE′的长,从而可求出CE′的值。在Rt△CDE′中,CD=6-OD,DE′=OD,根据勾股定理即可求出OD的长,也就得出了D点的坐标,然后可用待定系数法求出直线AD的解析式。

②①中已经求得CE′的长,即F点的横坐标,可根据直线AD的解析式求出F点的坐标,然后将F的坐标代入抛物线中即可求出抛物线的解析式.从而可根据抛物线的解析式来判断其与x轴交点的个数。

(3)可以猜想:(ⅰ)折痕所在直线与抛物线只有一个交点:(ⅱ)若作E''F''∥AB,交D'G'于F',则F'在抛物线上。验证(ⅰ)时,将y=-x+6代入,证明△=0即可。验证(ⅱ)时,说明G(6,0)满足即可。

7. (江苏省苏州市2004年7分)某中学为筹备校庆活动,准备印制一批校庆纪念册。该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页。印制该纪念册的总费用

2014美国数学建模A题解题思路大全

美国高速公路限速是多少?美国高速公路的限速一般在60至75英里之间,多数州规定不能超过限速100英里。也就是说,你在限速75英里的美国高速公路上跑到85英里,一般不会遭到警察追击。但再高上去,麻烦就来了,警车往往是在你毫无戒备的情况下出现的,那时候你根本不知道自己已经超速,更不知道自己已经成了某个警察的猎物。 1英里(mi.)=1760码=5280英尺=1.6093公里=3.2187市里=3.2187华里=1609.3米 中国最高车速不得超过每小时120公里<<中华人民共和国道路交通安全法实施条例>> 第七十八条高速公路应当标明车道的行驶速度,最高车速不得超过每小时120公里,最低车速不得低于每小时60公里。在高速公路上行驶的小型载客汽车最高车速不得超过每小时120公里,其他机动车不得超过每小时100公里,摩托车不得超过每小时80公里。同方向有2条车道的,左侧车道的最低车速为每小时100公里;同方向有3条以上车道的,最左侧车道的最低车速为每小时110公里,中间车道的最低车速为每小时90公里。道路限速标志标明的车速与上述车道行驶车速的规定不一致的,按照道路限速标志标明的车速行驶。 高速公路(简称为高速路或高速),一般是指双向2条车道以上、双向分隔行驶、完全控制出入口、 提出交通流模型前,应当将实际的涉及到车道数目、最高时速限制、交通路口、机械故障、驾驶员反 应能力等多种因素的实际问题理想化,以便于应用数学方法进行分析讨论。此处所做的假设包括: a.车辆沿一条无限长单向车道运动;

b.车辆在单向车道内只能朝一个方向运动; c.单向车道是全封闭的,即没有供车辆驶入或者驶出的岔路口; d.车辆相对于此序列中的其他车辆位置不发生改变,即没有抛锚或超车的情况。 基于上述的假设,对作匀速运动的恒定密度车流而言,交通流变量的函数关系为: q=P0 0 (4) 式中,P。为车辆运动时的恒定密度;。为车辆做匀速运动的速度。 实际的非恒定密度和非匀速运动的交通流仍然满足上述关系,其函数表达式为: g( ,t)=P( ,£)口( ,£ 车辆守恒方程 由基本的交通流变量中所做的假设可知车辆的总体数目不会因观测点、观测时间的变化而变化。 因此在单向车道的区间[a,b]内,车辆数目变化完全取决于在位置X=a处驶入的车辆及在位置x=b处 驶出的车辆数目之差。 交通流模型 将式(5)代人式(13)后,车辆守恒方程可以变形为: a£+’ (、ID,t,)=一0 (、14) 式(14)给出p和的关系。如果车流速度可知,则式(14)可以转化为关于密度P的偏微分方程,因 此可用于预测车流密度的变化情况。但是在实际应用中,车流的密度无法事先确定,因为对于各个具体 车辆而言,影响其速度的因素很多,包括驾驶者的意图和判断,交通状况的变化,驾驶者的反应速度等。如果要用数学模型的方法建构方程,则需对实际问题做进一步简化和假设。与车辆守恒方程中影响速 度的因素相关假设 问题A:保持向右行驶除非要超车的交通规则 在一些国家,汽车行驶在右边是规则,比如,美国,中国和其他大多数国家,除了英国,澳大利亚和一些前英国殖民地。多车道高速公路经常使用一个规则,就是要求司机在最右边的车道驾驶,除非它们要超车。超车就是他们开到左边的一个车道,超越,并恢复到原来的行驶车道。 (1)建立和分析一个数学模型来分析这一规则在车流量少和车流量大的不同时刻的表现。不妨检查权衡交通流量和其安全性。这些保持原车道或者被超车的速度限制(即限制最大速度和最小速度),或者其他的因素,可以不用考虑到问题中。 (2)这个规则,能有效地促进了更多的车流量吗?如果不能,提出并分析备选方案(之中最好不要用到题目中这类规则),能够促进更多的交通流量,安全性,或者你认为重要的其他因素。 (3)在一些国家,汽车行驶在左边是常态,讨论你的解决方案是否能够转用,

高中数学模型解题法

高中数学模型解题法 高中数学模型解题理念 数学模型解题首先需要明确以下六大理念(原则): 理念之一——理论化原则。解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价 值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的! 理论之二——个性化原则。倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。 理论之三——能力化原则。只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力

聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔! 理论之四——示范化原则。任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。 理论之五——形式化原则。哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。 理论之六——习惯性原则。关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。第三个层次,主动的解题,就是对题

初中常用数学模型

【1】中点+平行模型如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2;2.D 【2】一线三等角模型如图,若∠B=∠C=∠DEF=α(0<α≤90)则一定有△BDE 与△CEF 相似。十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。

【例题1】(2009 ) 【例题 2】(2006 ) 【例题3】(原创) 答案:1. 2或3-24或25 2.(5 453-,) 【3】巧造旋转模型在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。巧造旋转往往要有一定的等量关系和特殊角度,如下题:

通过观察可得∠ ABC=∠C=45°,AB=AC。我们可以将△ACD绕A顺时针旋转90°得到△ABE,使得AC与AB 重合。那么就有EB⊥BC,而在RT△AED中,DE2=2AD2(等腰直角三角形)所以BE2+BD2=DE2,即BD2+CD2=2AD2是不是赶脚很难想到?要学会判断,这种感觉是要练出来的!【例题1】(2014 ) 【例题2】【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略 【4】等腰模型这是一个很基础的模型——什么样的结构会生成等腰三角形首先:平行+角平 分线,如图,若AD‖BE,BC 平分∠ABE,则AB=AC,很好证的,导角即可。其次:垂直+角平分这个不难理解,因为等 腰三角形三线合一。这种模型很常用,常常需要做辅助线(延长之类)【例题1】(原创)

初中数学建模

初中数学建模教学有感 摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2]数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为: 一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中

数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”.低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元? ②假设一件衣服的进价是y元,以60元卖出,卖出后亏损25%,那么这件衣服的利润是多少元? (2)模型建立 问题1 你认为销售价与进价之间具有怎样的关系时是盈利的?

数学建模答题模板

例:某公司有6个仓库,库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38.各仓库到8个客户处得单位货物运价见下表。 问题分析:本问题中,各仓库的供应总量为302个单位,需求量为280个单位,为一个供需不平衡问题。目标函数为运输费用,约束条件有两个:分别是供应方和需求方的约束。 解: 引入决策变量ij x ,代表着从第i 个仓库到第j 个客户的货物运量,用符号ij c 表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 则本问题的数学模型为: 68 11 min ij ij i j z c x ===∑∑ s.t 8 1 61,1,2,6,1,2,,80,1,2,6,1,2,,8ij i j ij j i ij x a i x d j x i j ==? ≤=???? ? ? ≤=????? ?≥=???=?????∑∑ 模型求解:用LINGO 语言编写程序(程序见题后附录),运行得到以下求解结果:

以下省略了其他变量的具体数值。 计算结果表明:目标函数值为664.00,最优运输方案见下表 【参考文献】 [1]李大潜,中国大学生数学建模竞赛(第三版)[M],北京:高等教育出版社,2009 [2]叶其孝,大学生数学建模竞赛辅导教材(五)[M],长沙:湖南教育出版社,2008 [3]袁新生,邵大宏,郁时炼.LINGO和EXCEL在数学建模中的应用[M],北京:科学出版社,2007 附录:LINGO程序 model: sets: wh/w1..w6/:ai;vd/v1..v8/:dj; links(wh,vd):c,x; endsets data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; enddata min=@sum(links(i,j):c(i,j)*x(i,j));

初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2 ;2.D

如图,若∠B=∠C=∠DEF=α(0<α≤90) 则一定有△BDE与△CEF相似。 十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。 【例题1】(2009 ) 【例题2】(2006 ) 【例题3】(原创)

答案:1. 2或3-24或 25 2.(5 453-,) 【3】巧造旋转模型 在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。 巧造旋转往往要有一定的等量关系和特殊角度,如下题: 通过观察可得∠ABC=∠C=45°,AB=AC 。 我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。 那么就有EB ⊥BC ,而在RT △AED 中,DE2=2AD2(等腰直角三角形) 所以BE2+BD2=DE2,即BD2+CD2=2AD2 是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 ) 【例题2】 【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型 这是一个很基础的模型——什么样的结构会生成等腰三角形 首先:平行+角平分线, 如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。 其次:垂直+角平分 这个不难理解,因为等腰三角形三线合一。 这种模型很常用,常常需要做辅助线(延长之类)

初中教学数学建模

初中教学数学建模 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

初中数学建模教学感悟摘要:数学模型可以有效地描述自然现象和社会现象.数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程.初中数学建模教学宜低起点、小步子、多活动.数学思想是数学知识的结晶,是高度概括的数学理论.数学建模教学要重视数学知识,更应突出数学思想方法,让学生通过观察、实验、猜测、验证、推理与交流等数学学习活动,在获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展. 关键词:初中数学;数学建模;建模教学 数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展[1]. 对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.[2] 数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.[2]从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴. 数学建模的基本过程大致为:

一、初中数学建模教学宜低起点、小步子、多活动 过去数学建模只作为高等院校数学专业和部分计算机专业的课程.初中数学建模教学和高校的数学建模教学有很大的不同,初中数学建模教学一般先提出问题、引入正题;然后分析问题,在“引导——探索——创造”中建立模型;最后利用模型解决问题.[3]根据初中学生的身心发展水平、已经掌握的知识结构,初中数学建模教学宜“低起点、小步子、多活动”. 低起点,就是根据学生的现有水平,结合课程标准的要求,降低教学的起点,以便全体学生都能真正进入到教学活动中去.小步子,就是按照由易到难,由浅入深,由单一到综合,由简单到复杂的原则,安排层次分明,但梯度较小的教学情境,分散教学难点,突出教学重点,引领学生沿着数学学习活动的台阶拾级而上,最终达到课程标准的要求.多活动,就是恰当地设计问题情境,引领学生动眼看、动脑想、动口说、动手做,引领学生开展自主学习、合作交流、提问质疑等数学学习活动,引领学生在活动中获得知识,引领学生在活动中发展思维. [案例1]销售中的盈亏问题的建模教学 1、背景问题 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏? (人教版数学七年级上册第104页) 2、数学建模 (1)问题分析 ①假设一件衣服的进价是x元,以60元卖出,卖出后盈利25%,那么这件衣服的利润是多少元?

[高中数学解题技巧]高中数学模型解题法

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除 [高中数学解题技巧]高中数学模型解题 法 高中数学教学中,提升数学学习水平的关键是教师要教会学生解题的技巧和方法,好的解题技巧和方法能使学生的解题效率得到提升。接下来小编为你整理了高中数学解题技巧,一起来看看吧。 高中数学解题技巧之19条铁律 铁律1 函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

铁律2 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。 铁律3 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是…… 铁律4 选择与填空中出现不等式的题目,优选特殊值法。

铁律5 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。 铁律6 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。 铁律7 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,

与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。 铁律8 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。 铁律9 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。 铁律10

初中数学几个常用模型

初中数学几个数学模型 模型1、l:r=3600:n0 ①圆锥母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心 角等于( C )A.45°B.60°C.90°D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm,母线长为4cm,在一个边长为8cm的正 方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做(B)能做一个(C)可做二个(D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是(D )A、2r=R B、C、 D、 模型2、角平分线+平行=等腰三角形 如图,ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC, 交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的 大小关系( B ). (A)EF>BE+CF (B)EF=BE+CF (C)EF

③(2006邵阳T8. ) 将一副三角板按图(一)叠放,则△AOB 与△DOC 的面积之比等于(1:3 ) ④(2005年浙江绍兴T18.)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1) 将一副三角板如图叠放,则左右阴影部分面积:之比等于________ (2) 将一副三角板如图放置,则上下两块三角板面积 : 之比等于________ ⑤(2006年武汉市T24.10分)已知:将一副三角板(Rt △ABC 和Rt △DEF )如图①摆放, 点E 、A 、D 、B 在一条直线上,且D 是AB 的中点。将Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE 、AC 相交于点M ,直线DF 、BC 相交于点N ,分别过点M 、N 作直线AB 的垂线,垂足为G 、H 。 (1)当α=30°时(如图②),求证:AG =DH ; (2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由。 ⑥一副三角板由一个等腰直角三角形和一个含300 的直角三角形组成,利用这副三角板构成 一个含有150 角的方法较多,请你画出其中两种不同构成的示意图,并在图上标出必要的标注,不写作法. ⑦将一副三角尺如图摆放一起,连接AD, 则∠ADB 的余切值为 . ⑧如图, 中, , , ,过点 作 于 , A G D H M E F C B N 第24题图 图③ E F M N D A B G H 图④ C 45° 60° A E D B C F A G D H M E F C B (N ) 第24题图 图① 图②

初中数学建模教学

初中数学建模教学 【摘要】数学建模是一种教学手段;具体的建模分析方法;常见数学应用题的基本数学模型;.建模教学活动的设计体会。 【关键词】教学手段;建模分析;基本数学模型;活动设计 《全日制义务教育数学课程标准(实验稿)》指出:数学教学就是让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。由此可见,初中数学建模教学的研究已经是一个不可忽视的重大问题。近几年,中考加强了应用题的考察,这些应用题以数学建模为中心,以考察学生应用数学的能力,但学生在应用题中的得分率远底于其他题,原因之一就是学生缺乏数学建模能力和应用数学意识。因此中学数学教师应加强数学建模的教学,提高学生数学建模能力,培养学生应用数学意识和创新意识,结合教学实践,谈谈初中数学建模教学的一些学习体会。 1. 数学建模就是用数学语言描述实际现象的过程 数学建模就是用数学语言描述实际现象的过程,是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。可用下面的框图来说明这一过程: 实际问题——抽象、简化,明确变量和参数——根据某种“定律”或“规律”建立变量和参数间的一个明确的数学关系——解析地或近似地求解该数学问题——解释、验——投入使用——通不过——通过。 1.1审题。建立数学模型,首先要认真审题。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 1.2简化。根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。 1.3抽象。将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。按上述方法建立起来的数学模型,是不是符合实际,理论上、方法上是否达到了优化,在对模型求解、分析以后通常还要用实际现象、数据等检验模型的合理性。 2. 具体的建模分析方法

高中数学通用模型解题方法技巧总结

高中数学通用模型解题方法 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有种选择,即集合A有个子集。 当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德摩根定律: 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上,也应该马上可以想到m,n实际上就是方程的2个根 5、熟悉命题的几种形式、 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非” ∨∧? ()()().

命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 6、熟悉充要条件的性质(高考经常考) 满足条件,满足条件, 若;则是的充分非必要条件; 若;则是的必要非充分条件; 若;则是的充要条件; 若;则是的既非充分又非必要条件; 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B 的映射个数有n m个。 如:若,;问:到的映射有个,到的映射有个;到的函数有个,若,则到的一一映射有个。 函数的图象与直线交点的个数为个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法: ●分式中的分母不为零; ●偶次方根下的数(或式)大于或等于零; ●指数式的底数大于零且不等于一; ●对数式的底数大于零且不等于一,真数大于零。 ●正切函数 ●余切函数 ●反三角函数的定义域 函数y=arcsinx的定义域是[-1, 1],值域是,函数y=arccosx的定义域是[- 1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是R ,值域是.,函数y=arcctgx 的定义域是R ,值域是(0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

最新初中数学几个常用模型

初 中 数 学 几 个 数 学 模 型 ①圆锥母线长5cm ,底面半径长3cm ,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于( C ) A .45° B.60° C .90° D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm ,母线长为4cm ,在一个边长为8cm 的正方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做 (B)能做一个 (C)可做二个 (D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是 (D )A 、2r=R B 、R r =4 9 C 、R r =3 D 、r 4 模型2如图,?ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC , 交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( B ). (A )EF>BE+CF (B )EF=BE+CF (C )EF

③(2006邵阳T8. ) 将一副三角板按图(一)叠放,则△AOB 与△DOC 的面积之比等于(1:3 ) ④(2005年浙江绍兴T18.)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1) 将一副三角板如图叠放,则左右阴影部分面积1S :2S 之比等于________ (2) 将一副三角板如图放置,则上下两块三角板面积1A :2A 之比等于________ ⑤(2006年武汉市T24.10分)已知:将一副三角板(Rt △ABC 和Rt △DEF )如图①摆放, 点E 、A 、D 、B 在一条直线上,且D 是AB 的中点。将Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE 、AC 相交于点M ,直线DF 、BC 相交于点N ,分别过点M 、N 作直线AB 的垂线,垂足为G 、H 。 (1)当α=30°时(如图②),求证:AG =DH ; (2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由。 ⑥一副三角板由一个等腰直角三角形和一个含300 的直角三角形组成,利用这副三角板构成 一个含有150 角的方法较多,请你画出其中两种不同构成的示意图,并在图上标出必要的标注,不写作法. ⑦将一副三角尺如图摆放一起,连接AD, 则∠ADB 的余切值为 . ⑧如图,ABC ?中,?=∠90ACB ,?=∠30B ,1=AC ,过点C 作AB CD ⊥1于1D ,A G D H M E F C B N 第24题图 图③ E F M N D A B G H 图④ C 45° 60° A E D B C F A G D H M E F C B (N ) 第24题图 图① 图②

浅谈初中数学建模教学

浅谈初中数学建模教学 发表时间:2013-07-08T16:20:14.593Z 来源:《教育研究·教研版》2013年7月上供稿作者:熊兴波陈凤祥[导读] 注意结合学生的实际水平 熊兴波陈凤祥 〔摘要〕学校教育的根本任务在于教会学生如何学习以及如何应用知识解决问题。然而,作为数学教育工作者,我们应该教育学生学会把实际问题转化为数学问题加以解决,这就是数学教学中的一个重点,所以,如何构造数学模型和探讨建模在初中数学教学中对提高学生分析问题、解决问题的能力是我们教师的工作重点。 〔关键词〕初中数学建模教学应用意识近年来数学建模的题目在中考试题中也逐渐增大了权重。中考试题加强了应用题的考查,这些应用题以数学建模为中心,考查学生应用数学的能力,但学生在应用题中的得分率远低于其他题目,原因之一就是学生缺乏数学建模能力和应用数学意识。因此,我们应加强数学建模的教学,提高学生数学建模能力,培养学生应用数学的意识。 1 建模的四个重要步骤 1.1 要认真审题。建立数学模型,首先要认真审题。实际应用题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和对所求结论的限制条件。 1.2 要进行必要简化。根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。 1.3 抽象。将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。 1.4 数学模型求解、寻找现实原型问题的解,返回解释。数学模型求解也是很关键的一步,如果不能用数学方法正确求解的话,就不能让数学回归至正确解决实际问题,所有的工作将是功亏一篑,所以要让学生掌握数学模型的简捷快速高效的求解方法。完成模型求解之后,我们还需要验证求解数据对解决实际问题的合理性和适用性,找到实际应用题的解。显然,这一步是非常重要的,并且是必不可少的。这一步是体现数学应用价值的非常重要的一个环节,也是培养学生数学应用意识的最重要的一个环节。 2 建模教学的特点 2.1 活动性和趣味性。初中生的年龄特点决定了易于接受有趣味的,自身能参与的,活动性强的事物,感性思维多于理性思维,而他们对感兴趣的东西乐于学习和参与,而往往也比较容易学好,以前的教材学生觉得比较枯燥,提不起学习兴趣,阻碍了学生的发展。新教材给内容注入了很多有趣的现实情境,很多都是建模的好材料。 2.2 起点较低,容易掌握.根据学生现有的水平,结合课程标准的要求,降低教学起点,以便全体学生都能真正参与,选取的素材要贴近学生的生活实际、符合学生的认知经验,如利用温度计、刻度尺作为实际背景感受数轴模型;再如用丢番图的墓志铭或猜老师的年龄来感受方程模型;或从课本中出现的问题出发设置实际背景,学生比较熟悉,易于接受和掌握。如学习了一次函数有关知识后,则可把行程问题中的追击相遇类问题设计为一次函数模型来解决。 2.3 重方法,重思想。数学思想方法是数学的灵魂,没有思想方法的教学是机械的、低效的、扼杀创造力的教学,因此思想方法的指导应该贯穿在教学的各个环节。“授人以鱼,不如授人以渔”。时间推移,知识会遗忘,但思想方法会一直指导我们的人生。 3 数学建模教学要重视其发展过程 由于发展过程本身就蕴含着丰富的数学建模思想,因此教师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理与过程,数学知识、方法的转化与应用,不能仅仅讲授数学建模结果,忽略数学建模的过程。 4 鼓励学生主动地参与建模学习中来数学应用与数学建模的目的并不是仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,更多地表现活动的特性。 5 注意结合学生的实际水平 数学建模对教师对学生都有一个逐步的学习和适应的过程。教师在数学建模教学实践中,特别应考虑学生的实际能力和水平,起始点要低,形式多样有利于更多的学生参与。在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景。在应用的重点环节结合比较多的训练,逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题,到独立地运用数学建模的方法解决教师提供的数学应用问题,最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。 6 结语 总而言之,培养学生解决实际问题的能力,也就是培养他们的建模能力,如果能够成功的培养学生建模能力,那将对提高学生学习的兴趣,培养创新意识,具有十分重要的作用.另外,作为教师的我们也要加强初中数学建模教学,培养学生应用数学的意识,重要的是在教学中坚持以学生为主体。让学生感受到学数学是为了用数学,数学就在我们的身边,自觉地在学习过程中构建数学模型意识。参考文献 1 教育部. 全日制义务教育数学课程标准(实验稿)[M].2001 2 冯永明.中学数学建模的教学构想与实践[J].数学通讯,2000.7 3 教育部. 全日制义务教育数学课程标准(实验稿)[M],2001.7 作者单位:重庆市丰都县滨江中学__

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

高中数学解题模型和解法_考前复习

高中数学解题模型和解法_考前复习 高中数学学习现状 一、不会解:想不到、分不清、思维定势 据调查显示:半数中学生成绩被数学、物理拖后提,原因并不是智力问题,也不是懒惰,而是方法的问题。这些学生做题就像在荒原上开汽车,很容易迷路,绕弯路。 二、解题慢:速度慢、不熟练、记忆模糊 80%的考生感叹:考试时间段,题目做不完。其实,这隐含着一个人们最容易忽视的问题:那就是没有在解题时建立正确的方法。公式、定理背的的滚瓜烂熟,但一到做题的时候就卡壳。尤其在考试的时候,时间又紧,做题卡壳,做小题的时间都不后用,最后几道大题直接就放弃了。 三、老出错:不细心、踩陷阱、毫厘之差 很多学生会说:这个题我做错,不是我不会,是因为粗心做错了。其实这个观点是大错特错。出题人会在出提时故意设置陷阱,就算你再细心,也还是很容易犯错,也就是说,罪魁祸首根部不是你粗心、细心的问题,而是解题方法的问题。 其实,将这些总结为一句话:成绩差,归根到底,没方法,缺少正确的引导! 针对这个令广大莘莘学子头疼的问题,我们提出模型解题法。只要在科学方法的引导下,成绩一定会得到最大程度的提高。 模型三大步:看题型、套模型、出结果。 第一步:熟悉模型,不会的题有清晰的思路 第二步:掌握模型,总做错的题不会错了 第三步:活用模型,大题小题都能轻松化解 一、选择题解答模型策略 注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。 准确是解答选择题的先决条件。选择题不设中间分,一步失误,造成错选,全题无分。所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。 迅速是赢得时间,获取高分的秘诀。高考中考生“超时失分”是造成低分的一大因素。对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。 一般地,选择题解答的策略是: ① 熟练掌握各种基本题型的一般解法。 ② 结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。 ③ 挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。 二、填空题解答模型策略 填空题是一种传统的题型,也是高考试卷中又一常见题型。高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。 根据填空时所填写的内容形式,可以将填空题分成两种类型: 一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。

相关文档
最新文档