复合函数求导解读

合集下载

复合函数的导数11

复合函数的导数11
首页 上页 下页 返回
y ( 2 x 2 )3 (1)
y sin x 2 (2)
3.4 复合函数的导数
新授课 例2 写出由下列函数复合而成的函数: (1) y ln u, u ln x (2)y cos u, u 1 x 2
解:(1) y ln(ln x ).
y cos(1 x 2 ) (2)
3.4
复合函数的导数
3.4 复合函数的导数
知识回顾 (1)函数的连续性; (2)如果函数 y f ( x ) 在点 x 0 处可导,与函数 y f ( x ) 在点 x 0 处连续的关系;
首页
上页
下页
返回
3.4 复合函数的导数
新授课
2 2 u 函数 y u , 3 x 2 , y ( 3 x 2) 构成间的关系? y ( 3 x 2) 2 可由 y u 2 u 3 x 2复合得到. 与
例1 指出下列函数的复合关系:
y cos x (4) y ln sin( 3 x 1) (3) 4 y cos x 23x 由 yu,cos u, 2 复合而成. ( 2 ) 由 y 3 u 2 u x x 复合而 解:(1) (3) 4 4 成. y sin x 2 由 y ln u u x 2 v , v 3 x 1 y ln sin( 3 x 1)由 y sin u,,u sin复合而成. 复合而 (4) (2) 成.
首页
上页
下页
返回
3.4 复合函数的导数
新授课
y u 2 , u 3 x 2 , ( x ) ( 3 x 2)2,求 y , u , f ( x ) f u x 若

复合函数的求导

复合函数的求导

复合函数的求导复合函数的求导是指根据微积分法则,求解复合函数中每个函数关于一定变量的一阶偏导数的过程。

复合函数是由两个或两个以上的函数组合而成的新函数,常见的有加减乘除、取幂、取对数等等。

因此,要求复合函数的导数,就需要根据微积分法则,把复合函数分解开来,依次求每个函数关于一定变量的一阶偏导数,然后再把这些偏导数组合起来,就可以得出复合函数关于该变量的一阶偏导数了。

这里要特别提出的是:当复合函数中包含有多个变量时,要求复合函数的导数,就不能按上述方法去分解复合函数,而是需要使用梯度法则或者链式法则来求解。

关于“复合函数的求导”,首先要明确的是,“求导”是求解某个函数在某点的一阶偏导数的过程。

而复合函数,就是把两个或者两个以上的函数组合起来形成的新函数,如加法函数、减法函数、乘法函数、除法函数、取幂函数、取对数函数等等,所以要求复合函数的导数,就要根据微积分法则,把复合函数分解开来,依次求每个函数关于一定变量的一阶偏导数,然后再把这些偏导数组合起来,就可以得出复合函数关于该变量的一阶偏导数了。

例1:求f(x)=x^3+2x^2-5x+8的导数。

解:将f(x)分解成复合函数:f(x)=x^3+2x^2-5x+8= (x^3+2x^2)+(5x-8)求f(x)的导数,即求f'(x)=(x^3+2x^2)'+(5x-8)'这里,(x^3+2x^2)是取幂函数,(5x-8)是加法函数,根据微积分法则,求这两部分函数的偏导数分别为:(x^3+2x^2)'=3x^2+4x(5x-8)'=5将这两个偏导数相加,即可得到 f'(x)=3x^2+4x+5 。

例2:求f(x, y)=y^2+xy-x^2的导数。

解:将f(x, y)分解成复合函数:f(x, y)=y^2+xy-x^2= (y^2+xy)+(-x^2)求f(x, y)的导数,即求f'(x, y)=(y^2+xy)+(-x^2)'这里,(y^2+xy)是乘法函数,(-x^2)是取幂函数,根据微积分法则,求这两部分函数的偏导数分别为:(y^2+xy)'=(2y+x, y+x)(-x^2)'=(-2x)将这两个偏导数相加,即可得到 f'(x, y)=(2y+x,y+x)-2x 。

复合函数导数知识点总结

复合函数导数知识点总结

复合函数导数知识点总结一、基本概念1. 复合函数的定义复合函数由两个函数组合而成,形式为h(x) = f(g(x)),其中f和g是两个函数,g的输出是f的输入。

例如,f(x) = x^2, g(x) = 2x,则h(x) = f(g(x)) = (2x)^2 = 4x^2。

2. 复合函数的导数复合函数的导数描述了函数随着自变量变化时的变化率。

在微分学中,复合函数的导数可以求解两种方法:链式法则和隐函数法则。

二、链式法则链式法则是求解复合函数导数的重要方法,它描述了复合函数导数与原函数导数之间的关系。

1. 链式法则的定义假设函数h(x) = f(g(x))是一个复合函数,其中f和g是可导函数,那么h的导数为h'(x) = f'(g(x)) * g'(x)。

这个公式表明,复合函数的导数等于外函数在内函数的值上的导数与内函数的导数的乘积。

2. 链式法则的应用链式法则最经典的应用是求解三角函数和指数函数的导数。

例如,如果f(x) = cos(x^2),g(x) = x^2,则通过链式法则可以求解f'(x) = -2x * sin(x^2)。

三、隐函数法则隐函数法则是求解复合函数导数的另一种方法,它适用于隐式表达形式的复合函数。

1. 隐函数法则的定义如果函数y = f(u)是由u = g(x)隐式定义的,则y对x的导数可以通过链式法则和隐函数法则求解:dy/dx = (dy/du) * (du/dx)。

2. 隐函数法则的应用隐函数法则在物理和工程学中有着广泛的应用,例如在描述曲线运动的方程中,就需要对隐式函数进行求导。

四、实际问题中的应用复合函数导数在实际问题中有着广泛的应用,特别是在解决动态变化的问题时,复合函数导数的应用尤为重要。

1. 物理学中的应用在物理学中,复合函数导数可以描述物体的运动和变化规律。

例如,在描述加速度、速度和位移之间的关系时,就需要用到复合函数导数。

复合函数求导公式是什么怎么求导

复合函数求导公式是什么怎么求导

复合函数求导公式是什么怎么求导复合函数的求导公式是怎样的,该怎么求导呢?同学们清楚吗,不清楚的同学来小编这里瞧瞧。

下面是由小编为大家整理的“复合函数求导公式是什么怎么求导”,仅供参考,欢迎大家阅读。

复合函数求导公式是什么怎么求导总的公式f'[g(x)]=f'(g)×g'(x)。

主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u 形成的一种函数关系,这种函数称为复合函数。

复合函数求导公式:①设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);②设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);总的公式f'[g(x)]=f'(g)×g'(x)。

先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。

两个函数商的复合函数可导的前提条件是作分母的函数即g(x)≠0,否则无意义。

复合函数求导,就是找出构成复合函数的子函数,一个复合函数可以拆分成无数种子函数。

对于复合函数自身带有幂指对这类较为难求导的函数,一般来说会以它为中心进行化简,即最终子函数能够很容易求出复合函数中的幂指对。

将复合函数的本框架作为原函数,化好子函数后,就是求导过程,划出来的函数全部求导,代入即可。

拓展阅读:微积分到底是什么微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

导数的复合求导法则

导数的复合求导法则

导数的复合求导法则导数的复合求导法则是微积分中的重要内容,它可以帮助我们计算含有复合函数的导数。

在复合函数中,一个函数嵌套在另一个函数内部,我们需要利用复合求导法则来计算这个复合函数的导数。

复合求导法则有两个部分:链式法则和指数法则。

一、链式法则:链式法则是计算复合函数导数的一种方法,它适用于函数嵌套的情况。

设有函数y=f(u)和u=g(x),则复合函数y=f(g(x))的导数可以表示为:dy/dx = (dy/du) * (du/dx)其中,(dy/du)表示外函数f(u)对内函数u=g(x)的导数,(du/dx)表示内函数u=g(x)对自变量x的导数。

链式法则的推导过程如下:1.设复合函数为y=f(g(x)),其中u=g(x)。

2. 通过求导的定义,可以计算出dy/du,即外函数f(u)对内函数u=g(x)的导数。

3. 通过求导的定义,可以计算出du/dx,即内函数u=g(x)对自变量x的导数。

4. 接着,将dy/du和du/dx相乘即可得到复合函数y=f(g(x))的导数:dy/dx = dy/du * du/dx。

链式法则的一个重要应用是计算嵌套函数的高阶导数。

利用链式法则,我们可以推导出计算嵌套函数高阶导数的公式。

例如,对于二阶导数,我们可以将链式法则应用两次来计算。

二、指数法则:指数法则是计算含有指数函数的复合函数导数的一种方法。

指数函数是指以常数e为底的自然指数函数,例如f(x) = e^x。

对于指数函数e^x,其导数等于其本身。

即d(e^x)/dx = e^x。

当复合函数中出现指数函数时,我们可以利用指数法则来计算其导数。

指数法则有两种形式:1. 对于一般形式的复合函数:y = e^(g(x)),其中u = g(x)。

则该复合函数的导数为dy/dx = (e^(g(x))) * g'(x)。

2. 对于特殊情况:y = a^(g(x)),其中a为常数。

则该复合函数的导数为dy/dx = (a^(g(x))) * ln(a) * g'(x)。

复合函数的导数求法

复合函数的导数求法

幂函数的导数
幂函数是形如$y = x^n$的函数,其 中$n$是实数。
VS
幂函数的导数可以通过幂函数的定义 和极限的定义求得,结果为$y' = nx^{n-1}$。
三角函数的导数
三角函数包括正弦函数、余弦函数和正切函数等。
正弦函数的导数是余弦函数,即$frac{d}{dx}sin x = cos x$;余弦函数的导数是负的正弦函数,即$frac{d}{dx}cos x = -sin x$; 正切函数的导数是正切函数的平方与1的和的倒数,即$frac{d}{dx}tan x = frac{1}{cos^2 x}$。
探讨未来可能的研究方向
复杂复合函数的求导 方法
对于更为复杂的复合函数,如多 层嵌套、多变量复合等,需要进 一步研究更为高效、简洁的求导 方法。这有助于解决实际应用中 更为复杂的数学问题。
复合函数导数的性质 研究
复合函数的导数具有一些独特的 性质,如连续性、可微性等。未 来可以进一步探讨这些性质在复 合函数求导中的应用,以及它们 对导数求解的影响。
对数函数是形如$y = log_a x$的函数,其中$a > 0$且$a neq 1$。
03 复合函数求导举例
简单复合函数求导
举例1
$y = sin(2x)$
分析
这是一个简单的复合函数,其中内层函数是 $2x$,外层函数是$sin u$。
求导过程
根据链式法则,$frac{dy}{dx} = cos(2x) cdot 2 = 2cos(2x)$。
指数函数和对数函数的导数
指数函数的导数是其本身与底数自然对数的乘 积,即$frac{d}{dx}a^x = a^x ln a$。
对数函数的导数是底数的倒数与自变量对数的倒数之 积,即$frac{d}{dx}log_a x = frac{1}{x ln a}$。

多元复合函数的求导法则详解

多元复合函数的求导法则详解具体来说,有两种常见的多元复合函数情况,即链式法则和求导法则。

下面将结合具体例子详细解释这两种求导法则。

链式法则:链式法则适用于一个函数内部嵌套一个函数的情况。

我们用一个简单的例子来说明。

假设有一个函数f(x)=x²+1,另一个函数g(y)=y³。

现在我们要求复合函数h(x)=g(f(x))的导数。

首先,我们可以计算出 f(x) 的导数 df/dx = 2x。

然后我们计算g(y) 的导数dg/dy = 3y²。

接下来,我们利用链式法则来求解 h(x) 的导数。

根据链式法则,h(x) 的导数可以表示为 h'(x) = (dg/df) *(df/dx)。

在这个例子中,(dg/df) 表示 g'(f(x))。

我们可以通过将 f(x) 的结果代入到 g(y) 中来计算 (dg/df)。

即将 f(x) 的结果代入到 g(y)中得到h(x) = g(f(x)) = (f(x))³ = (x²+1)³。

然后我们计算 g'(f(x)),也就是求 g(f(x)) 的导数。

根据前面的计算, g(y) 的导数dg/dy = 3y²。

将 f(x) 的结果代入 dg/dy 中,即f(x) = x²+1,我们得到dg/df = 3(x²+1)²。

接下来,我们将 (dg/df) 和 df/dx 代入链式法则的公式中,即h'(x) = (dg/df) * (df/dx) = 3(x²+1)² * 2x = 6x(x²+1)²。

因此,我们得出 h(x) 的导数为h'(x) = 6x(x²+1)²。

这个例子说明了链式法则的使用方法,即先计算每个嵌套函数的导数,然后将这些导数代入到链式法则的公式中,得到最终的复合函数的导数。

利用变量代换解决复合函数求导问题

利用变量代换解决复合函数求导问题复合函数的求导是微积分中一个重要的知识点,解决复合函数求导问题需要灵活使用变量代换方法。

变量代换是微积分中的基本技巧,能够大大简化计算过程,使得原本复杂的问题变得简单易懂。

本文将从实际问题出发,详细讲解如何利用变量代换解决复合函数求导问题。

一、复合函数的求导复合函数指由两个或多个基本函数相互组合而成的函数,其中一个函数的输出是另一个函数的输入。

例如,$f(x)=g(h(x))$ 就是一个复合函数,其中 $h(x)$ 和 $g(u)$ 分别是两个基本函数。

对于一个含有复合函数的函数,我们要求它的导数时,需要使用链式法则。

链式法则的基本形式是:$$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$$其中,$u$ 是中间变量,通过变量代换的方式将复合函数转化为一个简单的函数,从而求解其导数。

下面我们通过一个例子具体讲解如何使用变量代换解决复合函数求导问题。

例1:求解 $f(x)=(x^3+5x-2)^4$ 的导数。

解:在这个例子中,$f(x)$ 是一个由 $u=x^3+5x-2$ 组成的复合函数。

我们可以令$u=x^3+5x-2$,然后将原始函数表示为$f(u)=u^4$ 的形式,这样就可以用链式法则求解其导数。

根据链式法则,$f'(x)=\frac{df}{du}\cdot\frac{du}{dx}$。

其中的$\frac{df}{du}=4u^3$,$\frac{du}{dx}=3x^2+5$。

所以,$f'(x)=4(x^3+5x-2)^3\cdot(3x^2+5)$。

这样,我们就成功地用变量代换的方法求解了这个复合函数的导数。

二、变量代换的基本思路从上面的例子中,我们可以看到,使用变量代换的基本思路是将复合函数表达式中的内层函数用一个新的变量(通常用 $u$)来表示,然后再将该表达式表示为基本函数之间的组合形式。

高中数学《简单复合函数的导数》知识点讲解及重点练习

5.2.3简单复合函数的导数学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则.知识点复合函数的导数1.复合函数的概念一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).思考函数y=log2(x+1)是由哪些函数复合而成的?答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的.2.复合函数的求导法则一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u =g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.y=cos 3x由函数y=cos u,u=3x复合而成.(√)2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×)3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√)一、求复合函数的导数例1求下列函数的导数:(1)y=1(1-3x)4;(2)y=cos(x2);(3)y=log2(2x+1);(4)y=e3x+2.解(1)令u=1-3x,则y=1u4=u-4,所以y′u=-4u-5,u′x=-3.所以y ′x =y ′u ·u ′x =12u -5=12(1-3x )5.(2)令u =x 2,则y =cos u ,所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2). (3)设y =log 2u ,u =2x +1,则y x ′=y u ′u x ′=2u ln 2=2(2x +1)ln 2.(4)设y =e u ,u =3x +2, 则y x ′=(e u )′·(3x +2)′ =3e u =3e 3x +2.反思感悟 (1)求复合函数的导数的步骤(2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数: (1)y =11-2x; (2)y =5log 2(1-x ); (3)y =sin ⎝⎛⎭⎫2x +π3. 解 (1)()12=12,y x --设y =12u -,u =1-2x ,则y ′x =()1212u 'x '⎛⎫- ⎪⎝⎭-()32212u -⎛⎫-⋅ ⎪⎝⎭=-()32=12x .--(2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数, 所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′ =-5u ln 2=5(x -1)ln 2. (3) 设y =sin u ,u =2x +π3,则y x ′=(sin u )′⎝⎛⎭⎫2x +π3′=cos u ·2=2cos ⎝⎛⎭⎫2x +π3. 二、复合函数与导数的运算法则的综合应用 例2 求下列函数的导数: (1)y =ln 3xe x ;(2)y =x 1+x 2;(3)y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2. 解 (1)∵(ln 3x )′=13x ×(3x )′=1x ,∴y ′=(ln 3x )′e x -(ln 3x )(e x )′(e x )2=1x -ln 3x e x =1-x ln 3x x e x .(2)y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(3)∵y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2 =x (-sin 2x )cos 2x =-12x sin 4x ,∴y ′=⎝⎛⎭⎫-12x sin 4x ′=-12sin 4x -x2cos 4x ·4 =-12sin 4x -2x cos 4x .反思感悟 (1)在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进行等价变形,以达到化异求同、化繁为简的目的.(2)复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导. 跟踪训练2 求下列函数的导数: (1)y =sin 2x3;(2)y =sin 3x +sin x 3; (3)y =x ln(1+x ).解 (1)方法一 ∵y =1-cos 23x2,∴y ′=⎝ ⎛⎭⎪⎫12-cos 23x 2′=13sin 23x . 方法二 y ′=2sin x 3cos x 3·13=23sin x 3cos x3 =13sin 23x . (2)y ′=(sin 3x +sin x 3)′ =(sin 3x )′+(sin x 3)′ =3sin 2x cos x +cos x 3·3x 2 =3sin 2x cos x +3x 2cos x 3.(3)y ′=x ′ln(1+x )+x [ln(1+x )]′ =ln(1+x )+x 1+x.三、与切线有关的综合问题例3 (1)曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5 D .0 答案 A解析 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴0=|x x y'=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.(2)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值. 解 由曲线y =f (x )过(0,0)点, 可得ln 1+1+b =0,故b =-1. 由f (x )=ln(x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,即为曲线y =f (x )在点(0,0)处的切线的斜率. 由题意,得32+a =32,故a =0.反思感悟 (1)求切线的关键要素为切点,若切点已知便直接使用,切点未知则需先设再求.两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条件. (2)在考虑函数问题时首先要找到函数的定义域.在解出自变量的值或范围时也要验证其是否在定义域内.跟踪训练3 (1)已知函数f (x )=k +ln xe x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 . 答案 1解析 由f (x )=ln x +ke x,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞).由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a = .该切线与坐标轴围成的面积为 . 答案 2 14解析 令y =f (x ),则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0), 又切线与直线x +2y +1=0垂直,所以f ′(0)=2. 因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax , 所以f ′(0)=a e 0=a ,故a =2.由题意可知,切线方程为y -1=2x ,即2x -y +1=0. 令x =0得y =1;令y =0得x =-12.∴S =12×12×1=14.1.(多选)函数y =(x 2-1)n 的复合过程正确的是( ) A .y =u n ,u =x 2-1 B .y =(u -1)n ,u =x 2 C .y =t n ,t =(x 2-1)n D. t =x 2-1, y =t n答案 AD2.函数y =(2 020-8x )3的导数y ′等于( ) A .3(2 020-8x )2 B .-24x C .-24(2 020-8x )2 D .24(2 020-8x )2 答案 C解析 y ′=3(2 020-8x )2×(2 020-8x )′=3(2 020-8x )2×(-8)=-24(2 020-8x )2. 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2x D .y ′=2x cos 2x +2x 2sin 2x 答案 B解析 y ′=(x 2)′cos 2x +x 2(cos 2x )′ =2x cos 2x +x 2(-sin 2x )·(2x )′ =2x cos 2x -2x 2sin 2x .4.已知f (x )=ln(3x -1),则f ′(1)= . 答案 32解析 ∵f ′(x )=33x -1,∴f ′(1)=33-1=32.5.曲线 y =ln(2-x )在点(1,0)处的切线方程为 . 答案 x +y -1=0解析 ∵y ′=-12-x =1x -2,∴y ′| x =1=11-2=-1,即切线的斜率是k =-1, 又切点坐标为(1,0).∴y =ln(2-x )在点(1,0)处的切线方程为y =-(x -1), 即x +y -1=0.1.知识清单: (1)复合函数的概念. (2)复合函数的求导法则. 2.方法归纳:转化法.3.常见误区:求复合函数的导数时不能正确分解函数;求导时不能分清是对哪个变量求导;计算结果复杂化.1.(多选)下列函数是复合函数的是( ) A .y =-x 3-1x +1B .y =cos ⎝⎛⎭⎫x +π4C .y =1ln xD .y =(2x +3)4答案 BCD解析 A 不是复合函数,B ,C ,D 均是复合函数, 其中B 由y =cos u ,u =x +π4复合而成;C 由y =1u ,u =ln x 复合而成;D 由y =u 4,u =2x +3复合而成. 2.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5) D.x 2x +5答案 B解析 ∵y =x ln(2x +5), ∴y ′=ln(2x +5)+2x2x +5.3.函数y =x 3e cos x 的导数为( ) A .y ′=3x 2e cos x +x 3e cos x B .y ′=3x 2e cos x -x 3e cos x sin x C .y ′=3x 2e cos x -x 3e sin x D .y ′=3x 2e cos x +x 3e cos x sin x 答案 B解析 y ′=(x 3)′e cos x +x 3(e cos x )′=3x 2e cos x +x 3e cos x ·(cos x )′=3x 2e cos x -x 3e cos x sin x . 4.曲线y =x e x-1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案 C解析 ∵y =x e x -1,∴y ′=e x -1+x e x -1, ∴k =y ′|x =1=e 0+e 0=2,故选C.5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2 答案 B解析 设切点坐标是(x 0,x 0+1),依题意有⎩⎨⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.6.函数y =sin 2x cos 3x 的导数是 . 答案 y ′=2cos 2x cos 3x -3sin 2x sin 3x 解析 ∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x .7.已知函数f (x )的导函数为f ′(x ),若f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x ,则f ′⎝⎛⎭⎫π9= . 答案 33解析 ∵f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x , ∴f ′(x )=f ′⎝⎛⎭⎫π9·3cos 3x -3sin 3x , 令x =π9可得f ′⎝⎛⎭⎫π9=f ′⎝⎛⎭⎫π9×3cos π3-3sin π3 =32 f ′⎝⎛⎭⎫π9-3×32, 解得f ′⎝⎛⎭⎫π9=3 3.8.点P 是f (x )=(x +1)2上任意一点,则点P 到直线y =x -1的最短距离是 ,此时点P 的坐标为 . 答案728⎝⎛⎭⎫-12,14 解析 与直线y =x -1平行的f (x )=(x +1)2的切线的切点到直线y =x -1的距离最短.设切点为(x 0,y 0),则f ′(x 0)=2(x 0+1)=1,∴x 0=-12,y 0=14.即P ⎝⎛⎭⎫-12,14到直线y =x -1的距离最短. ∴d =⎪⎪⎪⎪-12-14-1(-1)2+12=728.9.求下列函数的导数: (1)y =ln(e x +x 2); (2)y =102x +3; (3)y =sin 4x +cos 4x .解 (1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x +2x )=e x +2x e x +x 2.(2)令u =2x +3,则y =10u ,∴y ′x =y ′u ·u ′x =10u ·ln 10·(2x +3)′=2×102x +3ln 10.(3)∵y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2 x ·cos 2 x =1-12sin 2 2x =1-14(1-cos 4x )=34+14cos 4x . ∴y ′=-sin 4x .10.曲线y =e sin x 在点(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程. 解 ∵y =e sin x , ∴y ′=e sin x cos x , ∴y ′|x =0=1.∴曲线y =e sin x 在点(0,1)处的切线方程为 y -1=x ,即x -y +1=0. 又直线l 与x -y +1=0平行, 故直线l 可设为x -y +m =0.由|m -1|1+(-1)2=2得m =-1或3.∴直线l 的方程为x -y -1=0或x -y +3=0.11.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ) A.13 B.12 C.23D .1 答案 A解析 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e -2×0=-2. 所以曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2,y =0与y =x 的图象,如图所示.因为直线y =-2x +2与y =x 的交点坐标是⎝⎛⎭⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),所以结合图象可得,这三条直线所围成的三角形的面积为12×1×23=13. 12.(多选)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值可以是( )A.π4B.π2C.3π4D. 7π8答案 CD解析 因为y =4e x +1, 所以y ′=-4e x(e x +1)2=-4e x e 2x +2e x +1=-4e x +1e x +2.因为e x >0,所以e x +1e x ≥2(当且仅当x =0时取等号), 所以y ′∈[-1,0),所以tan α∈[-1,0).又因为α∈[0,π),所以α∈⎣⎡⎭⎫3π4,π.13.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ= .答案 π6解析 ∵f ′(x )=-3sin(3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ),令g (x )=cos(3x +φ)-3sin(3x +φ),∵其为奇函数,∴g (0)=0,即cos φ-3sin φ=0,∴tan φ=33, 又0<φ<π,∴φ=π6. 14.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是 .答案 y =-2x -1解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,所以f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2, 所以切线方程为y =-2x -1.15.已知f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB .-11+x C.1(1+x )2D .-1(1+x )2答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1, 得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 16.(1)已知f (x )=e πx sin πx ,求f ′(x )及f ′⎝⎛⎭⎫12;(2)在曲线y =11+x 2上求一点,使过该点的切线平行于x 轴,并求切线方程. 解 (1)∵f (x )=e πx sin πx ,∴f ′(x )=πe πx sin πx +πe πx cos πx=πe πx (sin πx +cos πx ).∴f ′⎝⎛⎭⎫12=2e sin +cos 22πππ⎛⎫π ⎪⎝⎭ 2e .π=π(2)设切点坐标为P (x 0,y 0),由题意可知0=|0.x x y'=又y ′=-2x (1+x 2)2, ∴0=|x x y'=-2x 0(1+x 20)2=0. 解得x 0=0,此时y 0=1.即该点的坐标为P (0,1),切线方程为y -1=0.。

高等数学《复合函数的求导法则》

例 8 设z f ( x2,e2x ),f 可微,求 dz . dx
定理的结论可推广到中间变量多于两个的情况.
例:z f (u,v, w) , u u(t ) , v v(t ) , w w(t ) ,
则 dz z du z dv z dw dt u dt v dt w dt
f
(
xy,
x y
),f
可微,求
z
x

z
y
.

zx
f1
y
f
2
(
1 y
)
y
f1
1 y
f2 .
zy
f1 x
f2
(
1 y2
)
x
f1
x y2
f2 .
定理的结论可推广到中间变量多于两个的情况.
(2) 设u ( x, y)、v ( x, y)、w w( x, y)
都在点( x, y)具有对 x 和 y 的偏导数,复合函数
2、全微分形式不变性 ( 理解其实质 ) 3、求复合函数偏导数时,由于复合关系比较复 杂,用链式法则求偏导数时,首先要搞清楚哪些 是自变量,哪些是中间变量,其次要分清是求偏 导数或是全导数.
总结:
1、多元函数偏导数的类型很多,有求偏导数, 有证明偏导数存在,有讨论可微与连续及与偏 导数的关系问题.
——全导数公式
证 设 t 获得增量 t,
则 u (t t) (t), v (t t) (t); 由于函数z f (u, v)在点(u,v)有连续偏导数
z zuu zvv 1u 2v,
当u 0,v 0时, 1 0, 2 0
z t
zu
u t
zv
v t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
§1.2.2
复合函数求导法则
学习目标:1、牢记基本初等函数求导公式。
2、会利用基本初等函数求导公式求函数的导数。
3、能正确分解简单的复合函数,记住复合函数的求导公式。
4、会求简单的形如faxb的复合函数的导数。
教学重点:会分解简单的复合函数及会求导。
教学难点:正确分解复合函数的复合过程.
复习 :求下列函数的导数

(1)324yxx (2)sinxyx

(3)3cos4sinyxx (4)223yx
(5)ln2yx

设置情境:(4)利用基本初等函数求导公式如何求导?
(5)能用学过的公式求导吗?

探究1、探究函数ln2yx的结构特点
探究:指出下列函数的复合关系
1
2)sin()yxx

复合函数的概念 一般地,对于两个函数()yfu和()ugx,如果通过变量u,
y
可以表示成x的函数,那么称这个函数为函数()yfu和()ugx的复合函数,记作


()yfgx

复合函数的导数 复合函数()yfgx的导数和函数()yfu和()ugx的导
数间的关系为xuxyyu,即y对x的导数等于y对u的导数与u对x的导数的乘积.
若()yfgx,则()()()yfgxfgxgx
【典例讲解】
例1(课本例4)求下列函数的导数:

(1)2(23)yx;

(2)0.051xye;

本节课精华
记录

 预习心得:

1)()nmyabx
2

(3)sin()yx(其中,均为常数).
【反思感悟】 求复合函数的导数,关键在于分析清楚函数的复合关系,
选好中间变量。
变式:求下列函数的导数

(1)cos3xy (2)21yx

例2 求描述气体膨胀状态的函数334vrv的导数.

【反思感悟】求复合函数的导数,关键在于搞清楚复合函数的结构,明确
复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能
遗漏求导环节并及时化简计算结果.

例3求y =axxax22的导数.

【反思感悟】本题练习商的导数和复合函数的导数.求导数后要予以化简
整理.
例4求y =sin4x +cos 4x的导数.

【反思感悟】解法一是先化简变形,简化求导数运算,要注意变形准确.解
法二是利用复合函数求导数,应注意不漏步.
3

例5曲线y =x(x +1)(2-x)有两条平行于直线y =x的切线,求此二切线之间
的距离.

【课堂小结】
(1)会分解复合函数(2)会求复合函数的导数''',uxyyu其中u为中间变量。

【课堂练习】
1.求下列函数的导数

(1) y =sinx3+sin33x; (2)122sinxxy

(3))2(log2xa
2.求)132ln(2xx的导数

这节课你
学到了什
么?把它
写下来!

相关文档
最新文档