DNA连接反应

DNA连接反应
DNA连接反应

DNA连接反应

(一)外源DNA和质粒载体的连接反应

外源DNA片段和线状质粒载体的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下沉反应条件下,它就能有效地将平端DNA片段连接起来。

DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在瓜作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这倦,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值

以缓冲液的离子强度为转移,而后者可影响DNA的刚度。

i是溶液中所有互补末端的深度的测量值,对于具有自身互补粘端的双链dna而言,i=2NoMx10-3末端/ml这里No是阿佛伽德罗常数,M是DNA的摩尔浓度(单位:mol/L)。理论上,当j=i时,给定DNA分子的一个末端与同一分子的另一末端,以及与不同分子的末端相接触的可能性相等。因而在这样的条件下,在反应的初始阶段中,环状分子与多联体分子的生成速率相等。而当j>i时,有利于重新环化;当i>j,则有利于产生多联体。图1.9显示了DNA区段的大小与连接反应混合物中j:i之比分别为0.5、1、2和5时所需DNA浓度之间关系(Dugaiczyk等,1985)。现在考虑如下的连接反应混合物:其中除线状质粒之外,还含有带匹配末端的外源DNA片段。对于一个给定的连接混合物而言,产生单体环状重组基因组的效率不仅受反应中末端的绝对浓度影响,而且还受质粒和外源DNA末端的相对浓度的影响。当i是j的2-3倍(即末端的绝对浓度足以满足分子间连接的要求,而又不致引起大量寡聚体分子的形成时)外源DNA末端浓度的2倍时,有效重组体的产量可达到最大。这些条什下,连接反应终产物的大约40%都是由单体质粒与外源DNA所形成的嵌合体。当连接混合物中线瘃质粒的量恒定(j:i=3)而带匹配末端的外源DNA的量递增时,这种嵌合体在连接反应之末的理论产量。

涉及带粘端的线状磷酸化质粒DNA的连接反应应包含:

1)足量的载体DNA,以满足j:i>1和j:i<3。对一个职pUC18一般大小的质粒,这意味着连接反应中应含有载体DNA为20-60μg/ml。

2)未端浓度等于或稍高于载体DNA的外源DNA,如外源DNA浓度比载体低得多,在效连接产物的数量会很低,这样就很难别小部分带重组抽粒的转化菌落。这种情况下,可考虑采用一些步骤来减少带非重组质粒的背景菌落。如用磷酸酶处理线状质粒DNA或发迹克隆策略以便通过定向克隆的方法构建重组质粒。

(二)粘端连接

1)用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。

2)按如下所述设立连接反应混合物:

a.将0.1μl载体DNA转移到无菌微量离心管中,加等摩尔量的外源DNA。

b.加水至7.5μl,于45℃加温5分钟以使重新退炎的粘端解链,将混合物冷却到0℃。c.加入:10xT4噬菌体DNA连接酶缓冲液1μl

T4噬菌体NDA连接酶0.1Weiss单位

5mmol/L ATP 1μl

于16℃温育1-4小时

10xT4噬菌体DNA连接酶缓冲液

200mmol/L同Tris.Cl(pH7.6)

50mmol/K MgCl2

50mmol/L二硫苏糖醇

500μg/ml牛血清白蛋白(组分V.Sigma产品)(可用可不用)

该缓训液应分装成小份,贮存于-20℃。

另外,再设立两个对照反应,其中含有(1)只有质粒载体;(2)只有外源DNA片段。如果外源DNA量不足,每个连接反应可用50-100ng质粒DNA,并尽可能多加外源DNA,同时保持连接反应体积不超过10μl。可用至少3种不同方法来测定T4噬菌体DNA连接酶的活性。大多数制造厂商(除New England Biolabs公司外)现在都用Weiss等,11968)对该酶进行标化。1个Weiss单位是指在37℃下20分钏内催化1mmol32P从焦磷酸根置换到[γ,β-32P]ATP所需酶时,1个Weiss单位相当于0.2个用外切核酸酶耐受试验来定义的单位(Modrich和Lehman,1970)或者60个粘端单位(如New England Biolabs公司所定义)。因此,0.015Weiss单位的T4噬菌体DNA连接酶在16℃下30分钟内可使50%的λ噬菌体HindⅢ片段(5μg)得以连接。在本书中,T4噬菌体DNA连接酶一律用Weiss单位表示。\par 目前提供的T4噬菌体DNA连接酶均为浓溶液(1-5单位/μl),可用20mmol/L Tris.Cl(pH7.6)、60mmol/L KCl、5mmol/L二硫苏糖醇、500μg/ml牛血清白蛋白、50%甘稀释成100单位/ml的浓度置存。处于这种浓度并在这种缓冲液中的T4噬体DNA连接酶于-20℃保存3个月可保持稳定。

3)每个样品各取1-2μl转化大肠杆菌感受态细胞。

(三)平端DNA连接

T4噬菌体DNA连接酶不同于大肠杆菌DNA连接酶,它可以催化平端DNA片段的连接(Sgaramella和Khorana,1972;Sgaramella和Ehrlich,1978),由于DNA很容易成为平端,所以这是一个极为有用的酶学物性。有了这样的物性,才能使任何DNA分子彼此相连。然而,相对而言,平端连接是低效反应,它要求以下4个条件:

1)低浓度(0.5mmol/L)的ATP(Ferretti和Sgaranekka,1981)。

2)不存在亚精胺一类的多胺。

3)极高浓度的连接酶(50Weiss单位.ml)。

4)高浓度的平端。

1.凝聚剂

在反应混合物中加入一些可促进大分子群聚作用并可导致DNA分子凝聚成集体的物质,如聚乙二醇(Pheiffer和Zimmerman,1983;Zimmerman和Pheiffer,1983;ZimmermanT Harrison,1985)或氯化六氨全高钴(Rusche和Howard-Flanders,1985),可以使如何取得适当浓度的平端DNA的总是迎刃而解。在连接反应中,这些物质具有两作用:

1)它们可使平端DNA的连接速率加大1-3个数量级,因此可使连接反应在酶DNA浓度不高的条件下进行。

2)它们可以改变连接产物的分布,分子内连接受到抑制,所形成的连接产物一律是分子间连接的产物。这样,即使在有利于自身环化(j:i=10)的DNA浓度下,所有的DNA产物也将是线状多聚体。\par 在设立含凝聚剂的连接反应时,下列资料可供参考。

(1)聚乙二醇(PEG8000)

1)用去离子水配制的PEG8000贮存液(40%)分装成小份,冰冻保存,但加入连接反应混合物之前应将其融化并使其达到室温。在含15%PEG 8000的连接反应混合物中,对连接反刺激效应最为显著。除PEG 800和T4噬菌体DNA连接酶以外,其他所有连接混合物的组分应于0℃混合,然后加适当体积的PEG 8000(处于室温),混匀,加酶后于20℃进行温育。

2)连接混合物中含0.5mmol/L ATP和5mmol/L MgCl2时对连接反应的刺激效应最为显著,甚至ATP浓度略有增加或MgCl2浓度略有降低,都会严重降低刺激的强度(Pheiffer和Zimmerman,1983)。

3)浓度为15%的PEG 8000可刺激带粘端的DNA分子的连接效率提高至原来的10-100倍,反应的主产物是串联的多联体。

4)PEG 8000可刺激短至8个核苷酸的合成寡聚物的平端连接,在这一方面,它与氯化六氨合高钴有所不同。

(2)氯化六氨合高钴

1)氯化六氨合高钴可用水配成10mmol/L贮存液贮存于-20℃,它对连接反应的刺激具有高度的浓度信赖性。当连接反应混合物中盐深度为1.0-1.5μmol/L时,其刺激作用最大。氯化六氨合高钴可使平端连接的效率大约提高到原来的50W部,但只能使端连接的效率提高到原来的5倍(Rusche和Howard-Flanders,1985)。

2)在单价阳离子(30mmol/L KCl)存在下,它对平端连接仍有一定的刺激作用,但此时连接产物的分布有所改变。连接产物不再是清一色的分子间连接产物,相反,环状DNA将点尽优势。

3)与PEG8000不同,氯化六氨合高钴不能显著提高合成寡核苷酸的连接速率。

一、转化

由于外源DNA的进入而使细胞遗传性改变称为转化,早在1943年,Avery等就发现有毒肺炎双球菌的DNA与无毒肺炎双球菌共培养后产生有毒性的肺炎双球菌后代的转化现象。但DNA进入细胞的效率很低,在分子生物学和基因工程工作中可采取一些方法处理细胞,经处理后的细胞就容易接受外界DNA,称为感受态细胞,再与外源DNA接触,就能提高转化效率。例如大肠杆菌经冰冷CaCl2的处理,就成为感受态细菌,当加入重组质粒并突然由4℃转入42℃作短时间处理,质粒DNA就能进入细菌;用高电压脉冲短暂作用于细菌也能显著提高转化效率,这称为电穿孔(electroporation)转化法。

二、感染

噬菌体进入宿主细菌,病毒进入宿主细胞中繁殖就是感染(infection)。用经人工改造的噬菌体活病毒作载体,以其DNA与目的序列重组后,在体外用噬菌体或病毒的外壳蛋白将重组DNA包装成有活力的噬菌体或病毒,就能以感染的方式进入宿主细菌或细胞,使目的序列得以复制繁殖。感染的效率很高,但DNA包装成噬菌体或病毒的操作较麻烦。

三、转染

重组的噬菌体DNA也可象质粒DNA的方式进入宿主菌,即宿主菌先经过CaCl2,电穿孔等处理成感受态细菌再接受DNA,进入感受态细菌的噬菌体DNA可以同样复制和繁殖,这种方式称为转染(transfection)。M13噬菌体DNA导入大肠杆菌就常用转染的方法。重组DNA 进入宿主细胞也常用转染方式。最经典的是1973年建立的磷酸钙法,其利用的基本现象是:DNA如以磷酸钙-DNA共沉淀物形式出现时,培养细胞摄取DNA的效率会显著提高。用电穿孔法处理培养的哺乳类细胞也能提高细胞摄取DNA能力,但所用外加电场的强度、电脉冲的长度等条件与处理细菌者都很不相同。近年来用人工脂质膜包裹DNA,形成的脂质体(Liposome)可以通过与细胞膜融合而将DNA导入细胞,方法简单而有效,现有商售的脂质体试剂,使用日益广泛。

DNA连接反应及其问题分析

DNA连接反应及其问题分析 一、DNA连接介绍 外源DNA片段和线状质粒载体的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下沉反应条件下,它就能有效地将平端DNA片段连接起来。 DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在瓜作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这倦,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1 975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值以缓冲液的离子强度为转移,而后者可影响DNA的刚度。 i是溶液中所有互补末端的深度的测量值,对于具有自身互补粘端的双链dna而言,i=2NoMx10-3末端/ml这里No是阿佛伽德罗常数,M是DNA的摩尔浓度(单位:mol/L)。理论上,当j=i时,给定DNA分子的一个末端与同一分子的另一末端,以及与不同分子的末端相接触的可能性相等。因而在这样的条件下,在反应的初始阶段中,环状分子与多联体分子的生成速率相等。而当j>i时,有利于重新环化;当i >j,则有利于产生多联体。图1.9显示了DNA区段的大小与连接反应混合物中j:i之比分别为0.5、1、2和5时所需DNA浓度之间关系(Dugaiczyk等,1985)。现在考虑如下的连接反应混合物:其中除线状质粒之外,还含有带匹配末端的外源DNA片段。对于一个给定的连接混合物而言,产生单体环状重组基因组的效率不仅受反应中末端的绝对浓度影响,而且还受质粒和外源DNA末端的相对浓度的影响。当i 是j的2-3倍(即末端的绝对浓度足以满足分子间连接的要求,而又不致引起大量寡聚体分子的形成时)外源DNA末端浓度的2倍时,有效重组体的产量可达到最大。这些条什下,连接反应终产物的大约40%都是由单体质粒与外源DNA所形成的嵌合体。当连接混合物中线瘃质粒的量恒定(j:i=3)而带匹配末端

DNA连接试验

DNA连接试验 当我们已经获得目的基因片段,选择好适当的克隆(或表达,转化)质粒载体,并确定重组方案后,下面要进行的就是DNA片段之间的体外连接,从而获得重组子。此重组子可转入相应的宿主菌中用于对目的基因的扩增以及目的基因表达(如现代基因工程药物的生产),还可用于序列分析和转基因等重要生物技术的研究中。 DNA连接实验原理: DNA分子的体外连接就是在一定条件下,由DNA连接酶催化两个双链DNA片段组邻的5’端磷酸与3’端羟基之间形成磷酸酸脂键的生物化学过程,DNA分子的连接是在酶切反应获得同种酶互补序列基础上进行的。 带有相同末端(平端或粘端)的外源DNA片段必须克隆到具有匹配末端的线性质粒载体中,但是在连接反应时,外源DNA和质粒都可能发生环化,也有可能形成串联寡聚物。因此,必须仔细调整连接反应中两个DNA 的浓度,以便使“正确”连接产物的数量达到最佳水平,此外还常常使用碱性磷酸酶去除5’磷酸基团以抑制载体DNA的自身环化。利用T4 DNA连接酶进行目的DNA片段和载体的体外连接反应,也就是在双链DNA 5’磷酸和相邻的3’羟基之间形成新的共价键。如载体的两条链都带有5’磷酸(未脱磷),可形成4个新的磷酸二酯键;如载体DNA已脱磷,则只能形成2个新的磷酸二酯键,此时产生的重组DNA带有两个单链缺口,在导入感受态细胞后可被修复。 不对称粘性末端:两种限制酶消化后,需纯化载体以提高连接效率;载体与外源DNA连接处的限制酶切位点常可保留;非重组克隆的背景较低;外源DNA 可以定向插入到载体中。 对称性粘性末端;线形载体DNA常需磷酸酶脱磷处理;载体与外源DNA 连接处的限制酶切位点常可保留;重组质粒会带有外源DNA的串联拷贝;外源DNA会以两个方向插入到载体中。 3、平端:要求高浓度的DNA和连接酶;载体与外源DNA连接处的限制酶切位点消失;重组质粒会带有外源DNA的串联拷贝;非重组克隆的背景较高。 粘性末端连接: 实验试剂: 用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。 10×T4DNA连接酶buffer(该缓冲液应分装成小份,贮存于-20℃。):200mMTris-HCl(pH7.6);50mMMgCl2;50mM二硫苄糖醇

载体与目的基因的连接与转化以及重组DNA的提取与酶切鉴定

实验一载体与目的基因的连接与转化以及 重组DNA的提取与酶切鉴定 一、实验目的 1.CaCl2法制备感受态细胞 2.目的基因与载体连接(c-myc+pSV2;粘端连接) 3.重组质粒转化大肠杆菌并筛选转化体(HB101;Amp r) 4.质粒DNA的小量快速制备 5.质粒DNA的限制性内切酶酶切 6.DNA的琼脂糖凝胶电泳 二、实验原理 通过粘端连接法将具有相同粘性末端的DNA分子连接在一起,通过碱基配对氢键形成一个相对稳定的结构,利用连接酶发挥间断修复的功能,从而获得重组的DNA分子。 受体细胞经处理后(电击或CaCl2等处理),细胞膜通透性发生变化,从而使外源的载体分子通过感受态细胞,并使受体细胞获得新的稳定遗传的性状,该过程称为转化。由于本实验种pSV带有抗氨苄青霉素的基因,因而转化后的细胞在含氨苄青霉素的平板上培养可以筛选出转化成功的受体细胞。 分离质粒DNA的步骤包括:培养细菌使质粒扩增、收集和裂解细菌以及分离和纯化质粒DNA。SDS可以使细胞壁裂解,碱变性抽提质粒DNA的原理是利用染色体DNA与质粒DNA的变性复性的差异达到分离目的,当pH>12.6时,染色体DNA氢键断裂,双螺旋结构解开而变性,质粒DNA由于超螺旋共价闭合环状结构,两条互补链不会完全分离。当采用pH 4.8的NaAc高盐缓冲液调节pH至中性时,质粒DNA恢复原有的构型,而染色体DNA则不能复性而缠绕形成网状结构。通过离心可将染色体DNA及大分子RNA、蛋白质等去除。 三、实验器材和试剂 1.器材 恒温摇床、电热恒温培养箱、电热恒温水浴、台式离心机、低温离心机、涡旋振荡器、移液枪及枪头、1.5 ml离心管、制冰机、三角推棒、酒精灯、细菌培

DNA连接试验复习课程

D N A连接试验

DNA连接试验 当我们已经获得目的基因片段,选择好适当的克隆(或表达,转化)质粒载体,并确定重组方案后,下面要进行的就是DNA片段之间的体外连接,从而获得重组子。此重组子可转入相应的宿主菌中用于对目的基因的扩增以及目的基因表达(如现代基因工程药物的生产),还可用于序列分析和转基因等重要生物技术的研究中。 DNA连接实验原理: DNA分子的体外连接就是在一定条件下,由DNA连接酶催化两个双链DNA片段组邻的5’端磷酸与3’端羟基之间形成磷酸酸脂键的生物化学过程,DNA分子的连接是在酶切反应获得同种酶互补序列基础上进行的。 带有相同末端(平端或粘端)的外源DNA片段必须克隆到具有匹配末端的线性质粒载体中,但是在连接反应时,外源DNA和质粒都可能发生环化,也有可能形成串联寡聚物。因此,必须仔细调整连接反应中两个DNA 的浓度,以便使“正确”连接产物的数量达到最佳水平,此外还常常使用碱性磷酸酶去除5’磷酸基团以抑制载体DNA的自身环化。利用T4 DNA连接酶进行目的DNA片段和载体的体外连接反应,也就是在双链DNA 5’磷酸和相邻的3’羟基之间形成新的共价键。如载体的两条链都带有5’磷酸(未脱磷),可形成4个新的磷酸二酯键;如载体DNA已脱磷,则只能形成2个新的磷酸二酯键,此时产生的重组DNA 带有两个单链缺口,在导入感受态细胞后可被修复。 不对称粘性末端:两种限制酶消化后,需纯化载体以提高连接效率;载体与外源DNA连接处的限制酶切位点常可保留;非重组克隆的背景较低;外源DNA可以定向插入到载体中。

对称性粘性末端;线形载体DNA常需磷酸酶脱磷处理;载体与外源DNA 连接处的限制酶切位点常可保留;重组质粒会带有外源DNA的串联拷贝;外源DNA会以两个方向插入到载体中。 3、平端:要求高浓度的DNA和连接酶;载体与外源DNA连接处的限制酶切位点消失;重组质粒会带有外源DNA的串联拷贝;非重组克隆的背景较高。 粘性末端连接: 实验试剂: 用适当的限制酶消化质粒和外源DNA。如有必要,可用凝胶电泳分离片段并(或)用碱性磷酸酶处理质粒DNA。通过酚:氯仿抽提和乙沉淀来纯化DNA,然后用TE(pH7.6)溶液使其浓度为100/ml。 10×T4DNA连接酶buffer(该缓冲液应分装成小份,贮存于-20℃。):200mMTris-HCl(pH7.6);50mMMgCl2;50mM二硫苄糖醇 500μl/ml BSA(可用可不用) T4DNA连接酶% 5mM ATP 实验步骤: 1、在无菌Eppendorf管中加入以下溶液: 1) 10μl体积反应体系中:取载体50-100ng,加入一定比例的外源DNA 分子(一般线性载体DNA分子与外源DNA分子摩尔数为1∶1-1∶5),补足ddH2O 至8μl。

T4dna连接酶使用说明

Certificate of Analysis Product name/Description: T4 DNA Polymerase Cat. #: 2040A Lot #: K314BA Storage Condition: -20 degrees C Shipping Condition: -20 degrees C Expiration Date: Specified on product label Package Size: 100 U Package Contents: 1. T4 DNA Polymerase 5 U/μl 100 U 2. 10X T4 DNA Polymerase Buffer (BSA free) 1 ml 3. 0.1% BSA 10X 1 ml Product Documents: Documents for Takara Bio products are available for download at https://www.360docs.net/doc/d73161717.html, Source: Unit Definition: Quality Control Data: Nuclease contamination test: Endonuclease activity was not detected by agarose gel electrophoresis after incubation of 1 μg of supercoiled pBR322 DNA with 2 units of this product for 16 hours at 37°C. Escherichia coli carrying the plasmid containing phage T4 DNA polymerase gene One unit of the enzyme is defined as the amount that incorporates 10 nmol of total nucleotides into acid-insoluble products in 30 minutes at 37°C and pH 8.8, with heat-denatured calf thymus DNA as the template-primer. It is certified that this product meets above specifications. Manager, Quality Assurance TAKARA BIO INC.

试验一、DNA连接和转化

试验一、DNA连接和转化 质粒的转化是指将质粒或以它为载体构建的重组子导入细菌的过程。将连接产物转化到感受态细胞中,实现重组克隆的增殖,便于后续分子操作。可以采用多种方法筛选和鉴定目的克隆。 一、实验目的 掌握DNA的连接方法和热激法转化大肠杆菌感受态细胞及转化子的鉴定原理和实验方法。 二、实验原理 1)限制性内切酶可识别特定位点并切割DNA 产生粘性末端或平端的外源片段,经DNA 的纯化处理后用于连接反应;选择克隆载体多克隆位点上相应的限制性内切酶切割,并用碱性磷酸酶处理防止载体自连;在连接酶的作用下将外源片段连接到载体上,实现外源片段的克隆。 2)TA克隆:克隆载体用限制性内切酶酶切后,再在两侧的3端添加“T”。大部分耐热性DNA聚合酶进行PCR反应时都有在PCR产物的3末端添加“A”的特性。二者在DNA连接酶的作用下利用粘性末端进行连接。 3)热激法:大肠杆菌在0 ℃CaCl2低渗溶液中,细菌细胞膨胀成球形,转化混合物中的DNA 形成抗DNase 的羟基-钙磷酸复合物粘附于细胞表面,

经42℃短时间热冲击处理,促进细胞吸收DNA 复合物,在丰富培养基上生长数小时后,球状细胞复原并分裂增殖。在被转化的细胞中,重组子基因得到表达,在选择性培养基平板上可挑选所需的转化子。 三、仪器和材料 超净工作台、恒温培养箱、移液枪、冷冻循环水浴锅、恒温摇床。 pMD18-T Vector、DNA片段、Solution I、感受态细胞DH5α、Amp+ LB液体培养基、Amp-LB液体培养基、Amp-LB固体培养基、X-gal (20mg/ml)、IPTG(200mg/ml)。 四、实验步骤 1、连接反应步骤: 1)在离心管中配制下列混合溶液,全量为5μl。(冰上操作) pMD18-T Vector 1μl DNA 1μl H2O 3μl 2)加入5μl的solution I。(冰上操作) 3)16℃反应30min。 2、转化反应步骤: 1) 将连接产物10μl加入到已制备好的感受态细胞中,冰上孵育30min。 2) 42℃水浴中热休克90s,立即冰上冷却2min。 3)加入200μl不含氨苄(amp)的LB液体培养基,37℃,150rpm,振荡培养40min。 4) 加40μl的X-Gal (20mg/ml)和8μl IPTG(200mg/ml)。 5) 约200μl转化产物涂布于培养平板上。放置于37℃培养箱,待溶液被琼 脂吸干,倒置平板,37℃,培养16h。 6)第二天上午观察蓝白斑筛选结果。 五、作业 1、实验结果。(平板图片) 2、在热激以后进行活化培养,这时的培养基中为什么不加入氨苄青霉素?

dna连接反应的影响因素提高平端连接效率的方法

DNA连接反应的影响因素&提高平端连接效率的方法&外源DNA和质粒载体的连接反应&平端DNA连接接反应 1、连接缓冲液的影响:大体上缓冲液含有以下组分:20-100mmol/L 的Tris-HCl,较多用50mmol/L,pH的范围在7.4-7.8,较多用7.8,目的是提供合适酸碱度的连接体系;10mmol/L的MgCl2,作用是激活酶反应;1-20mmol/L的DTT,较多用10mmol/L,作用是维持还原性环境,稳定酶活性,25-50ug/ml的BSA,作用是增加蛋白质的浓度,防止因蛋白浓度过稀而造成酶的失活。与限制酶缓冲液不同的是连接酶缓冲液还含有0.5-4mmol/L的ATP,现多用1mmol/L,是酶反应所必需的。 2、 pH的影响:一般将缓冲液的pH调节到7.4-7.8,较多用7.8。有实验表明,若把pH为7.5-8.0时的酶活力定为100%,那么体系偏碱(pH为8.3)时仅为全部活力的65%;当体系偏酸(PH为6.9)时仅为全部活力的40%。 3、 ATP浓度的影响:连接缓冲液中ATP的浓度在0.5-4mmol/L之间,较多用1mmol/L。研究发现,ATP的最适浓度为0.5-1mmol /L,过浓会抑制反应。例如,5mmol/L的ATP会完全抑制平末端连接,黏端的连接也有10%被抑制;还有报道,当ATP的浓度为0.1mmol/L 时,去磷酸载体的自环比例最大。由于ATP极易分解,所以当连接反应失败时,除了DNA与酶的问题外,还应考虑ATP的因素。含有ATP的缓冲液应于 -20℃保存,溶化取用后立即放回。连接缓冲液体积较大时最

好分小管贮存,防止反复冻融引起ATP分解。与限制酶缓冲液不同的是,含ATP的连接缓冲液长期放置后往往失效,所以也可自行配制不含ATP的缓冲液(可长期保存),临用时加入新配制的ATP母液。 4、连接温度与时间的影响:因为黏性末端的DNA双链间有氢键的作用,所以温度过高会使氢键不稳定,但连接酶的最适温度又恰为37℃。为了解决这一矛盾,在经过综合考虑后,传统上将连接温度定为16℃,时间为4-16h。现经实验发现,对于一般的黏性末端来说,20℃30min就足以取得相当好的连接效果,当然如果时间充裕的话,20℃60min能使连接反应进行得更完全一些。对于平末端是不用考虑氢键问题的,可使用较高的温度,使酶活力得到更好的发挥。 5、酶浓度的影响:日常使用的DNA浓度比酶单位定义状态低10-20倍,连接平末端时酶用量要比连接黏端大10-100倍。进行黏末端连接时需先行稀释,稀释液的成分与酶保存缓冲液相同或类似,稀释液中的酶能在长时间保持活力,也便于随时取用。 6、 DNA浓度的影响:要求得到环化的有效连接产物, DNA浓度不可过高,一般不会超过20nmol/L。要求线性化的连接产物, DNA的浓度可以高些,至少是接近推荐的浓度。在用大质粒载体进行大片段克隆时,以及在双酶切片段的连接反应中,DNA浓度还应降低,甚至是DNA的总浓度低至几个nmol/L。另据研究,T4 DNA连接酶对DNA末端的表观Km值为1.5nmol/L,所以,连接时DNA浓度不应低于 1nmol/L。即应具有2nmol/L的末端浓度。

NEB T4DNA连接酶

T4 DNA 连接酶 货号规格价格 #M0202L 100,000 units 3,029.00元 #M0202M (高浓度5x)100,000 units 3,029.00元 #M0202S 20,000 units 699.00元 #M0202T (高浓度5x)20,000 units 699.00元 #M0202V 10,000 units 349.00元 ■ 提高反应效率 ■粘性末端和平齐末端均可连接 ■限制性酶切片段的克隆(3) ■将linker 或adapter 连接到DNA 片段的平齐末端 ■室温或16 ℃均有活性 概述 该酶催化契合的双链DNA或RNA的5′-磷酸末端和3′-羟基末端形成磷酸二酯键。该酶不仅能够催化平滑末端或粘性末端DNA之间的连接,还可以修复双链DNA、RNA或DNA/ RNA杂交双链中的单链切口(1) 。 来源 纯化自E. coli C600 pcl857 pPLc28 lig8(2) 。 反应条件 1 X T4 DNA 连接酶缓冲液[ 50 mM Tris-HCl(pH 7.5 @ 25 ℃),10 mM MgCl2,10 mM DTT,1 mM ATP]。推荐DNA 5' 末端浓度为0.1-1.0 μM。 质保声明 无核酸内切酶和外切酶污染。每批T4 DNA 连接酶均通过模拟克隆实验进行检测,该实验可以检测出连接后DNA 末端的任何损伤。结果表明超过99.9% 的DNA 末端保持完好。 单位定义(粘性末端活性单位) 1 单位指在20 μl 1X T4 DNA 连接酶反应缓冲液中,16 ℃反应条件下,30 分钟能使50% 的经HindIII 消化的λDNA 片段[5' 端浓度为0.1 2 μM (300 μg/ml)]连接所需的酶量。 浓度 400,000 units/ml 和2,000,000 units/ml。 贮存条件

DNA连接反应

DNA连接反应 (一)外源DNA和质粒载体的连接反应 外源DNA片段和线状质粒载体的连接,也就是在双链DNA5'磷酸和相邻的3'羟基之间形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下沉反应条件下,它就能有效地将平端DNA片段连接起来。 DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在瓜作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这倦,在DNA浓度低时,质粒DNA重新环化将卓有成效。如果连接反应中DNA浓度有所增高,则在分子内连接反应发生以前,某一个DNA分子的末端碰到另一DNA分子末端的可能性也有所增大。因此在DNA浓度高时,连接反的初产物将是质粒二聚体和更大一些的寡聚体。Dugaiczyk等(1975;同时参见Bethesda Res,Lab.出版的Focus第2卷,第2、3期合刊)从理论上探讨了DNA浓度对连接产物性质的影响。简而言之,环化的连接产物与多联体连接产物的比取决于两个参数:j和i。j是DNA分子的一个末端在同一分子的另一末端附近的有效浓度,j的数值是根据如下一种假设作出的:沉吟液中的DNA呈随机卷曲。这样,j与DNA分子的长度成反比(因为DNA越长,某一给定分子的两末端的越不可能相互作用),因此j对给定长度的DNA分子来说是一个常数,与DNA深度无关。j=[3/(3πlb0)]3/2其中l是DNA长度,以cm计,b是随机卷曲的DNA区段的长度。b的值

DNA的连接

DNA的连接 4.1 实验原理 4.1.1 DNA的连接策略 质粒具有稳定可靠和操作简便的优点。如果要克隆较小的DNA片段(<10kb)且 结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆,从原理上 说是很简单的,先用限制性内切酶切割质粒DNA和目的DNA片段,然后体外使 两者相连接,再用所得到重组质粒转化细菌,即可完成。 外源DNA片段和质粒载体的连接反应策略有以下几种: (1)互补性粘性末端的连接 单一限制性内切酶或两种限制性内切酶(为同尾酶,如BamHI和BglII)分别 处理载体和外源DNA,得到的粘性末端为互补性突出末端,在连接反应中外源 片段和质粒载体DNA均可能发生自身环化或几个分子串连形成寡聚物,且正反 两种连接方向都可能有。为了降低载体的自身环化,使正确的连接产物数量达 到最高水平,一般载体DNA和外源DNA的分子数比(浓度比)为1:3~1:10 之间。同时,为了最大限度地抑制质粒DNA的自身环化,还可将载体DNA的5’磷酸基团用碱性磷酸酯酶去掉,防止其自身环化。而带5’端磷酸的外源DNA 片段可有效地与去磷酸化的载体相连,产生一个带有两个缺口的开环分子,在 转入E.coli受体菌后该种缺口可在DNA复制过程中自动修复。 (2)非互补粘性末端的连接 用两种不同的限制性内切酶进行消化可以产生带有非互补的粘性末端,这DNA 重组中最容易克隆的DNA片段。一般情况下,常用质粒载体均带有多个不同限 制酶的识别序列组成的多克隆位点,因而几乎总能找到与外源DNA片段末端匹 配的限制酶切位点的载体,从而将外源片段定向地克隆到载体上。也可在PCR 扩增时,在DNA片段两端人为加上不同酶切位点以便与载体相连。该种粘性末 端的连接载体DNA和外源DNA的分子数比(浓度比)通常为为1:1。

DNA连接反应的步骤及说明

快速DNA连接试剂盒 概述: 克隆中两个重要步骤包括外源DNA与载体的连接和重组DNA的转化。连接反应是通过连接酶完成的,连接反应需要ATP和镁离子催化双链DNA的3’-OH 和5’-P形成磷酸二酯键。DNA末端可以是粘末端,也可以是平末端。粘末端连接反应效率高于平末端连接效率。因此,在连接平末端分子时DNA 浓度要高于粘末端分子连接反应的DNA浓度。PEG可以使T4 DNA连接酶对平末端和粘末端连接效率得到提高[Pheiffer, B.H., Zimmerman, S.B., Nucleic Acids Res., 11, 7853-7871, 1983]。由于PEG可以辅助提高连接效率,该试剂盒对于粘末端和平末端的连接只需十分钟即可完成。试剂盒中提供独特的5×Rapid Ligation Buffe,专为提高DNA连接效率设计。高的PEG浓度可以提高连接反应效率但却会使转化效率降低,因此应该对PEG浓度进行优化。该试剂盒中优化的PEG浓度同时保证了高的连接效率和转化效率。 目录号规格价格 LINK-3030次180元 保存: 试剂盒中所有组分需-20℃保存。请不要用其它试剂替代该试剂盒中的反应缓冲液。 试剂盒包装组成: 该试剂盒中提供的试剂可以完成30×20μl DNA连接反应。 试剂盒组成规格( 30 reactions ) T4 DNA ligase 30μl 5×Rapid Ligation Buffer 200μl (5x RLB) 特点: 室温(20-25℃)连接10-30 min。 存储缓冲液: 10 mM Tris-HCl (pH 7.5) 50 mM KCl 1 mM Dithiothreitol 50% Glycerol 质量控制: 试剂盒中提供的T4 DNA连接酶没有检测到外切核酸酶或内切核酸酶活性。另外每一批连接酶都通过SDS聚丙烯酰胺凝胶检测蛋白污染(低于5%)。 ·核酸外切酶污染检验 T4 DNA连接酶与1mg经超声波处理的3H标记的E.coli DNA (105cpm/mg)在50ml反应体系中,采用随酶提供的Rapid Ligation Buffer,

DNA连接反应的影响因素

DNA连接反应的影响因素 1、连接缓冲液的影响:大体上缓冲液含有以下组分:20-100mmol/L的Tris-HCl,较多用50mmol/L,pH的范围在7.4-7.8,较多用7.8,目的是提供合适酸碱度的连接体系; 10mmol/L的MgCl2,作用是激活酶反应;1-20mmol/L的DTT,较多用10mmol/L,作用是维持还原性环境,稳定酶活性,25-50ug/ml的BSA,作用是增加蛋白质的浓度,防止因蛋白浓度过稀而造成酶的失活。与限制酶缓冲液不同的是连接酶缓冲液还含有0.5-4mmol/L的ATP,现多用1mmol/L,是酶反应所必需的。 2、 pH的影响:一般将缓冲液的pH调节到7.4-7.8,较多用7.8。有实验表明,若把pH 为7.5-8.0时的酶活力定为100%,那么体系偏碱(pH为8.3)时仅为全部活力的65%;当体系偏酸(PH为6.9)时仅为全部活力的40%。 3、 ATP浓度的影响:连接缓冲液中ATP的浓度在0.5-4mmol/L之间,较多用1mmol/L。研究发现,ATP的最适浓度为0.5-1mmol/L,过浓会抑制反应。例如,5mmol/L的ATP会完全抑制平末端连接,黏端的连接也有10%被抑制;还有报道,当ATP的浓度为0.1mmol/L 时,去磷酸载体的自环比例最大。由于ATP极易分解,所以当连接反应失败时,除了DNA 与酶的问题外,还应考虑ATP的因素。含有ATP的缓冲液应于-20℃保存,溶化取用后立即放回。连接缓冲液体积较大时最好分小管贮存,防止反复冻融引起ATP分解。与限制酶缓冲液不同的是,含ATP的连接缓冲液长期放置后往往失效,所以也可自行配制不含ATP的缓冲液(可长期保存),临用时加入新配制的ATP母液。 4、连接温度与时间的影响:因为黏性末端的DNA双链间有氢键的作用,所以温度过高会使氢键不稳定,但连接酶的最适温度又恰为37℃。为了解决这一矛盾,在经过综合考虑后,传统上将连接温度定为16℃,时间为4-16h。现经实验发现,对于一般的黏性末端来说,20℃ 30min就足以取得相当好的连接效果,当然如果时间充裕的话,20℃ 60min能使连接反应进行得更完全一些。对于平末端是不用考虑氢键问题的,可使用较高的温度,使酶活力得到更好的发挥。

相关文档
最新文档