基于分区域的元胞自动机及城市扩张模拟

基于分区域的元胞自动机及城市扩张模拟
基于分区域的元胞自动机及城市扩张模拟

元胞自动机(CA)代码及应用

元胞自动机(CA)代码及应用 引言 元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状态。变化规则适用于每一个元胞并且同时进行。典型的变化规则,决定于元胞的状态,以及其(4或8 )邻居的状态。元胞自动机已被应用于物理模拟,生物模拟等领域。本文就一些有趣的规则,考虑如何编写有效的MATLAB的程序来实现这些元胞自动机。 MATLAB的编程考虑 元胞自动机需要考虑到下列因素,下面分别说明如何用MATLAB实现这些部分。并以Conway的生命游戏机的程序为例,说明怎样实现一个元胞自动机。 ●矩阵和图像可以相互转化,所以矩阵的显示是可以真接实现的。如果矩阵 cells的所有元素只包含两种状态且矩阵Z含有零,那么用image函数来显示cat命令建的RGB图像,并且能够返回句柄。 imh = image(cat(3,cells,z,z)); set(imh, 'erasemode', 'none') axis equal axis tight ●矩阵和图像可以相互转化,所以初始条件可以是矩阵,也可以是图形。以下 代码生成一个零矩阵,初始化元胞状态为零,然后使得中心十字形的元胞状态= 1。 z = zeros(n,n); cells = z; cells(n/2,.25*n:.75*n) = 1; cells(.25*n:.75*n,n/2) = 1; ●Matlab的代码应尽量简洁以减小运算量。以下程序计算了最近邻居总和,并 按照CA规则进行了计算。本段Matlab代码非常灵活的表示了相邻邻居。 x = 2:n-1; y = 2:n-1; sum(x,y) = cells(x,y-1) + cells(x,y+1) + ... cells(x-1, y) + cells(x+1,y) + ... cells(x-1,y-1) + cells(x-1,y+1) + ... cells(x+1,y-1) + cells(x+1,y+1); cells = (sum==3) | (sum==2 & cells); ●加入一个简单的图形用户界面是很容易的。在下面这个例子中,应用了三个 按钮和一个文本框。三个按钮,作用分别是运行,停止,程序退出按钮。文框是用来显示的仿真运算的次数。 %build the GUI %define the plot button plotbutton=uicontrol('style','pushbutton',...

交通流中的NaSch模型及MATLAB代码元胞自动机完整

元胞自动机NaSch模型及其MATLAB代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: ●模型参数取值:Lroad=1000,p=,Vmax=5。 ●边界条件:周期性边界。 ●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的 结果。 ●基本图(流量-密度关系):需整个密度范围内的。 ●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画 500个时间步即可)。 ●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思 路。 ●? 流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 ●? 在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 ●时间、空间和车辆速度都被整数离散化。

● 道路被划分为等距离的离散的格子,即元胞。 ● 每个元胞或者是空的,或者被一辆车所占据。 ● 车辆的速度可以在(0~Vmax )之间取值。 2、NaSch 模型运行规则 在时刻t 到时刻t+1的过程中按照下面的规则进行更新: (1)加速:),1min(max v v v n n +→ 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:),min(n n n d v v → 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化: 以随机概率p 进行慢化,令:)0, 1-min(n n v v → 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:n n n v x v +→ ,车辆按照更新后的速度向前运动。 其中n v ,n x 分别表示第n 辆车位置和速度;l (l ≥1)为车辆长度;11--=+n n n x x d 表示n 车和前车n+1之间空的元胞数;p 表示随机慢化概率;max v 为最大速度。 3、NaSch 模型实例 根据题目要求,模型参数取值:L=1000,p=,Vmax=5,用matlab 软件进行编程,扔掉前11000个时间步,统计了之后500个时间步数据,得到如下基本图和时空图。 程序简介 初始化:在路段上,随机分配200个车辆,且随机速度为1-5之间。 图是程序的运行图,图中,白色表示有车,黑色是元胞。

基于约束条件的元胞自动机土地利用规划布局模型_图文(精)

第32卷第12期 2007年12月武汉大学学报信息科学版Geo matics and Informat ion Science of W uhan U niver sity Vo l.32N o.12Dec.2007收稿日期:2007 10 10。 项目来源:国家自然科学基金资助项目(40271088;广西应用基础研究专项基金资助项目(0731022;广西高校人才小高地资源与环境科学科研创新团队建设经费资助项目。 文章编号:1671 8860(200712 1164 04文献标志码:A 基于约束条件的元胞自动机 土地利用规划布局模型 杨小雄1,2 刘耀林1 王晓红1,3 段滔1 (1 武汉大学资源与环境科学学院,武汉市珞喻路129号,430079 (2 广西师范学院资源与环境科学学院,南宁市明秀东路175号,530001 (3 贵州大学林学院,贵阳市花溪区,550025 摘要:分析了我国当前土地利用规划布局的不足,对标准的元胞自动机模型的元胞涵义、规则定义等进行了 扩展,探讨了元胞自动机模型在政策及相关规划约束、邻域耦合、适宜性约束、继承性约束及土地利用规划指 标约束下的土地利用规划布局的元胞自动机模型。以广西东兴市为例进行了模型的仿真运行和结果分析。 关键词:土地利用规划布局;元胞自动机;约束条件 中图法分类号:P273;P208

常见的土地利用规划布局有土地利用分区模 式和土地利用类型模式[1]。传统的布局方法受人 为因素影响较大,不能动态地反映土地利用规划 布局的全过程,难以适应土地规划智能化信息处 理的需求。 元胞自动机(cellular auto mata,CA作为一 种通用的时空动态模型,已成为城市增长、扩散和 土地利用演化、土地利用情景模拟等方面的研究 热点[2 4]。元胞自动机在土地利用规划布局方面 的研究正处于探讨阶段,并在基本农田保护区的 自动生成方面已取得一些成果[5],但对如何利用 元胞自动机进行区域土地利用规划布局尚未系统 地研究。本文通过基于约束条件的元胞自动机与 GIS 相结合来进行土地利用规划布局研究,对于 消除常规模拟方法所带来的弊端,提高土地利用 总体规划的科学性、合理性具有重要的理论和现 实意义。1 模型构建1.1 基本流程利用元胞自动机进行区域土地利用规划布 局,是从土地利用现状出发,通过土地利用方式的迭代来实现土地利用的规划目标。对于N 种土地利用类型,每个元胞可以有N N 种可能的变化,但在规划期内,土

元胞自动机简史

元胞自动机简史 元胞自动机的诞生是人类探索人的认识本质的结果,也是计算技术巨大进步推动的结果。自古以来,人类认识一般问题的根本方法就是,建模和计算(推演)。模型是人类智力能理解自然世界的唯一方式。而元胞自动机正是一种可以用来建模也非常容易进行计算的理论框架和模型工具。最早从计算的视角审视问题的是关心人的认识本质的哲学家。笛卡尔认为, 人的理解就是形成和操作恰当的表述方式。洛克认为, 我们对世界的认识都要经过观念这个中介, 思维事实上不过是人类大脑对这些观念进行组合或分解的过程。霍布斯更是明确提出, 推理的本质就是计算。莱布尼兹也认为, 一切思维都可以看作是符号的形式操作的过程。进入20 世纪, 弗雷格, 怀特海、罗素等人通过数理逻辑把人类的思维进一步形式化, 形成了所谓的命题逻辑及一阶和高阶逻辑。在他们看来, 逻辑和数学, 都是根据特定的纯句法规则运作的。在这里, 所有的意义都被清除出去而不予考虑。在弗雷格和罗素的基础上, 维特根斯坦在他的早期哲学中把哲学史上自笛卡尔以来的原子论的理性主义传统发展到了一个新的高度。在维特根斯坦看来, 世界是逻辑上独立的原子事实的总和, 而不是事物的总和; 原子事实是一些客体的结合, 这些事实和它们的逻辑关系都在心灵中得到表达: 我们在心灵中为自己建造了事实的形象。人工智能事实上就是试图在机器中实现这种理性主义理想的一门学科。 在计算理论发展过程中, 阿兰·图灵(A. Turing) 的思想可以说是最关键的。在1936 年发表的论文中, 图灵提出了著名的图灵机概念。图灵机的核心部分有三: 一条带子、一个读写头、一个控制装置。带子分成许多小格, 每小格存一位数; 读写头受制于控制装置, 以一小格为移动量相对于带子左右移动, 或读小格内的数, 或写符号于其上。可以把程序和数据都以数码的形式存储在带子上。这就是“通用图灵机”原理。图灵在不考虑硬件的前提下, 严格描述了计算机的逻辑构造。这个理论不仅解决了纯数学基础理论问题, 而且从理论上证明了研制通用数字计算机的可行性。 图灵认为, 人的大脑应当被看作是一台离散态机器。尽管大脑的物质组成与计算机的物质组成完全不同, 但它们的本质则是相同。。离散态机器的行为原则上能够被写在一张行为表上, 因此与思想有关的大脑的每个特征也可以被写在一张行为表上, 从而能被一台计算机所仿效。1950 年, 图灵发表了《计算机器和智能》的论文, 对智能问题从行为主义的角度给出了定义, 设计出著名的“图灵测验,论证了心灵的计算本质, 并反驳了反对机器能够思维的9 种可能的意见。 与图灵提出人的大脑是一台离散态的计算机的思想几乎同一时期, 计算机科学的另一个 开创者冯·诺伊曼(J . von Neumann) 则开始从计算的视角思考生命的本质问题。一个人工的机器能够繁殖它自己吗? 当年笛卡尔在声称动物是机器的时候, 就曾被这个问题所难住。但冯·诺伊曼要回答这个问题, 他要找到自动机产生后代的条件, 他要证明机器可以繁殖! 为此, 冯·诺伊曼作了一个思想实验。他想象一台机器漂浮在一个池塘的上面, 这个池塘里有许多机器的零部件。这台机器是一台通用的建造器: 只要给出任何一台机器的描述,这台机器就会在池塘中寻找合适的部件, 然后再制造出这台机器。如果能够给出它自身的描述, 它就可以创造出它本身。不过, 这还不是完全的自我繁殖, 因为后代机器还没有对自身的描述, 它们因此不能复制自己。所以, 冯·诺伊曼继续假定最初的机器还必须包含一个描述复制器, 一旦后代机器产生出来, 它也从亲代那里复制一份关于自身的描述, 这样, 后代机器就可以无穷无尽地繁殖下去。 冯·诺伊曼的试验揭示了一个深刻的问题:任何自我繁殖的系统的基因材料, 无论是自然的还是人工的, 都必须具有两个不同的基本功能: 一方面它必须起到计算机程序的作用, 是一种在繁殖下一代时能够运行的算法, 另一方面它必须起到被动数据的作用, 是一个能够复制和传给下一代的描述。1953 年沃森和克里克揭示的DNA 结构和自我复制的机理。DNA 的特性正好具备冯·诺伊曼所指出的两个要求。 然而, 冯·诺伊曼对他自己的动力学模型并不十分满意。他不能充分地获得最小的逻辑前提, 因为该模型仍然以具体的原材料的吸收为前提。冯·诺伊曼感到, 该模型没有很好地把过程的

城市建设用地扩张研究中CA模型的应用

城市建设用地扩张研究中CA模型的应用 摘要:本文首先介绍了元胞自动机基本理论及其应用于城市建设用地扩张研究中表现的特性。其次,就城市建设用地扩张的特点,阐述了研究中如何定义元胞自动机。然后以Idrisi Andes软件中集成的Markov模型和CA模型为研究工具,重点提出了研究方法及思路。最后总结分析了利用成熟CA模块研究城市建设用地扩张的利弊。 关键词:建设用地;扩张;CA 随着人类生存需求和经济活动的日趋加剧,特别是近年城市化水平的不断提高,给耕地保护和经济发展带来了巨大压力。为了合理有序的推进城市化建设,必须加强城市用地扩张的管理,提高城市用地规划的水平。城市用地是城市复杂巨系统的一部分,其扩张的演变过程遵循一定规律,受到地理条件、基础设施、社会经济、政治、人口、国家政策法规和人类活动等因素的影响。 目前,元胞自动机(CA)模型与GIS技术相结合,进行城市用地扩张的动态模拟日益成为研究热点,作为时空演化分析和模拟的工具,将元胞自动机模型和GIS技术引入城市建设用地扩张的研究中,能够弥补统计分析模型的不足,提供具有时空特性的分析结果。 一、基本概念 元胞自动机(CA)由V on Neumann在20世纪40年代提出,用于研究自复制系统的逻辑特性。元胞自动机是一种时间、空间、状态都离散,空间相互作用及时间因果关系皆局部的网格动力学模型(周成虎等,1999)。分布在规则格网中的每一个元胞拥有有限的离散状态,按照一致的作用规则,根据确定的局部规则同时同步更新元胞状态,完成整个元胞空间的变化。大量元胞通过简单的相互作用完成系统的动态演化。与传统的动力学模型不同,元胞自动机不是由明确的函数或模型确定,而是一系列模型在确定的构造规则条件下的有机组合。遵守这些既定构造规则的模型都可以称作元胞自动机模型。所以元胞自动机是一种解决问题思想,或者说是一个方法框架。 元胞自动机由元胞、元胞空间、元胞状态、邻域、转换规则和离散时间构成。在元胞自动机系统中,各个元胞之间是相互离散的,它们共同构成一个离散的元胞空间;在系统任一个时间点t,每一个元胞只能取离散有限状态集合中的一种状态;邻域由分布在中心元胞周围的元胞集合构成,这些元胞按照一定的布局规则,在中心元胞周围一定范围内,以一定形状存在,邻域对中心元胞下一时刻的状态有很大决定作用;转换规则是元胞状态转换应遵循的规则,确定元胞t到t+1时刻状态是否发生转换和如何转换;元胞自动机中的时间没有具体的意义,是离散的,可以简单的理解为元胞空间的一次迭代变化。 二、建设用地扩张中元胞自动机的构成

基于元胞自动机模型的城市历史文化街区的仿真

文章编号: 1673 9965(2009)01 079 05 基于元胞自动机模型的城市历史文化街区的仿真* 杨大伟1,2,黄薇3,段汉明4 (1.西安工业大学建筑工程系,西安710032;2.西安建筑科技大学建筑学院,西安710055; 3.陕西师范大学历史文化学院,西安710061; 4.西北大学城市与资源学系,西安710069) 摘 要: 为了探讨当前城市规划中远期预测的科学性和准确性问题,将自组织理论与元胞自动机模型结合,在一定的时空区域,构建了一个城市增长仿真模型.将元胞自动机模型应用于西安市最具历史文化特色的区域中,形成自下而上的规划模型.元胞自动机模型对于西安回民区的空间发展城市历史文化特色街区的模拟具有一定的原真性和时效性,在时空中能反应当前的空间格局.元胞自动机在城市规划的预测中具有图式与范式结合的特点,在中长期的预测中形成符合城市规划发展战略的空间格局. 关键词: 元胞自动机;自组织;历史文化特色街区;空间演化 中图号: T U984 文献标志码: A 自组织理论是当前城市复杂性研究的主要研究方向之一.自组织是相对他组织而言,即自我、本身自主地组织化、有机化,意味着一种自动的、自发性的行为,一种自下而上、由内至外的发展方式.其主要涵义可以简单概括:在大多数情况下,作用于系统的外部力量并不能直接对系统的行为产生作用,而是作为一种诱因,即引入序参量引发系统内部发生相变,系统通过这一系列的变化自发地组织起来,最终大量微观个体的随机过程表现出宏观有序的现象[1]. 20世纪40年代U lam提出元胞自动机模型(Cellular Autom at o n M odel,CA),V on N eu m ann将其用于研究自复制系统的逻辑特性,且很快用于研究自组织系统的演变过程,其中对城市系统自组织过程的模拟是焦点问题[2 9]. CA是定义在一个具有离散状态的单元(细胞)组成的离散空间上,按一定的局部规则在离散时间维演化的动力学系统.一个CA模型通常包括单元、状态、邻近范围和转换规则4要素[9],单元是其最小单位,而状态则是单元的主要属性.根据转换规则,单元可以从一个状态转换为另外一个状态,转换规则通过多重控制函数来实现. 自组织理论的提出,对于解释相对封闭,具有自身演化规律的复杂适应系统中的复杂现象和问题具有重要意义和应用前景.而CA 自下而上的研究思路,强大的复杂计算功能、固有的并行计算能力、高度动态特征以及具有空间概念等特征,使其在模拟空间复杂系统的时空演变方面具有很强的能力,在城市学研究中具有天然优势[9 15].本文将自组织理论引入CA模型,并将该模型首次应用于西安回民区这一复杂的相对独立的历史街区中,就是为了得出其在自组织的作用下,未来20年空间发展的变化模型,为城市规划的制定做出科学的预测.下面对西安回民区做一简单介绍. 西安回民区位于西安旧城中心的中西地段,东接西安历史文化遗产钟楼和北大街,西接洒金桥,南到西大街,北到莲湖路,面积约为93.4公顷,人口约为77600人,在此居住的居民中有43.6%以 第29卷第1期 西 安 工 业 大 学 学 报 V o l.29No.1 2009年02月 Jo urnal o f Xi!an T echnolo g ical U niver sity Feb.2009 *收稿日期:2008 06 04 基金资助:国家自然科学基金(50678149) 作者简介:杨大伟(1981 ),男,西安工业大学助教,西安建筑科技大学博士研究生,主要研究方向为城市空间复杂性. E mail:yangdaw ei@https://www.360docs.net/doc/e16379904.html,.

CA元胞自动机优化模型原代码

CA优化模型原代码: M=load(‘d:\ca\jlwm’) N=load(‘d:\ca\jlwn.asc’) lindishy=load(‘d:\ca\ldfj3.asc’) caodishy=load(‘d:\ca\cdfj3.asc’) gengdishy=load(‘d:\ca\htfj3.asc’) [m,n]=size(M); Xr=[1 1 -1 1 1 1 -1 -1 1 1;1 1 1 1 -1 -1 1 1 1 -1;-1 1 1 1 -1 -1 -1 1 -1 -1;1 1 1 1 1 1 -1 1 1 I; l -1 -1 1 1 -1 -1 -1 1 1;1 -1 -1 1 -1 1 -1 1 -1 -1;-1 1 -1 -1 -1 -1 1 -1 -1 -1;-1 1 1 1 -1 1 -1 1 -1 -1;1 1 -1 1 1 -1 -1 -1 1 1;1 -1 -1 1 1 -1 -1 -1 1 1]; caodi=0;lindi=0;gengdi=0; for i=1:m forj=l:n if M(i,j)==4 caodi=caodi+1; elseif M(i,j)==3 lindi=lindi+1; elseif M(i,j)==2 gengdi=gengdi+1; end end end for i=1:m for j=1:n if M(i,j)==4 if lindishy(i,j)>gengdishy(i,j) if lindishy(i,j)>caodishy(i,j) z=0; for P=max(1,i-1):min(i+1,m) for q=max(j-1,1):min(j+1,n) if (M(p,q)~=0)&&xr(M(p,q),3)==-1 z=1; end end end if z== 0 caodi=eaodi-1; M(i,j)=3; lindi=lindi+1; end elseif lindishy(i,j)==caodishy(i,j) caoditemp=0; linditemp=0; gengditemp=0;

元胞自动机简史

元胞自动机简史元胞自动机的诞生是人类探索人的认识本质的结果,也是计算技术巨大进步推动的结果。自古以来,人类认识一般问题的根本方法就是,建模和计算(推演)。模型是人类智力能理解自然世界的唯一方式。而元胞自动机正是一种可以用来建模也非常容易进行计算的理论框架和模型工具。最早从计算的视角审视问题的是关心人的认识本质的哲学家。笛卡尔认为, 人的理解就是形成 和操作恰当的表述方式。洛克认为, 我们对世界的认识都要经过观念这个中介, 思维事实上不过是 人类大脑对这些观念进行组合或分解的过程。霍布斯更是明确提出, 推理的本质就是计算。莱布尼兹也认为, 一切思维都可以看作是符号的形式操作的过程。进入20 世纪, 弗雷格, 怀特海、罗素等人通过数理逻辑把人类的思维进一步形式化, 形成了所谓的命题逻辑及一阶和高阶逻辑。在他们看来, 逻辑和数学, 都是根据特定的纯句法规则运作的。在这里, 所有的意义都被清除出去而不 予考虑。在弗雷格和罗素的基础上, 维特根斯坦在他的早期哲学中把哲学史上自笛卡尔以来的原 子论的理性主义传统发展到了一个新的高度。在维特根斯坦看来, 世界是逻辑上独立的原子事实 的总和, 而不是事物的总和; 原子事实是一些客体的结合, 这些事实和它们的逻辑关系都在心灵中得到表达: 我们在心灵中为自己建造了事实的形象。人工智能事实上就是试图在机器中实现这种理性主义理想的一门学科。 在计算理论发展过程中,阿兰图灵(A. Turing)的思想可以说是最关键的。在1936年发表的论 文中, 图灵提出了著名的图灵机概念。图灵机的核心部分有三: 一条带子、一个读写头、一个控制装置。带子分成许多小格, 每小格存一位数; 读写头受制于控制装置, 以一小格为移动量相对于带子左右移动, 或读小格内的数, 或写符号于其上。可以把程序和数据都以数码的形式存储在带子上。这就是“通用图灵机”原理。图灵在不考虑硬件的前提下, 严格描述了计算机的逻辑构造。这个理论不仅解决了纯数学基础理论问题, 而且从理论上证明了研制通用数字计算机的可行性。 图灵认为, 人的大脑应当被看作是一台离散态机器。尽管大脑的物质组成与计算机的物质组成完全不同, 但它们的本质则是相同。。离散态机器的行为原则上能够被写在一张行为表上, 因此与思想有关的大脑的每个特征也可以被写在一张行为表上, 从而能被一台计算机所仿效。1950 年, 图灵发表了《计算机器和智能》的论文, 对智能问题从行为主义的角度给出了定义, 设计出著名的“图灵测验,论证了心灵的计算本质, 并反驳了反对机器能够思维的9 种可能的意见。 与图灵提出人的大脑是一台离散态的计算机的思想几乎同一时期, 计算机科学的另一个 开创者冯诺伊曼J . von Neumann)则开始从计算的视角思考生命的本质问题。一个人工的机器能 够繁殖它自己吗?当年笛卡尔在声称动物是机器的时候,就曾被这个问题所难住。但冯诺伊曼要回答这个问题, 他要找到自动机产生后代的条件, 他要证明机器可以繁殖! 为此,冯诺伊曼作了一个思想实验。他想象一台机器漂浮在一个池塘的上面,这个池塘里有许多机器的零部件。这台机器是一台通用的建造器: 只要给出任何一台机器的描述,这台机器就会在 池塘中寻找合适的部件, 然后再制造出这台机器。如果能够给出它自身的描述, 它就可以创造出它本身。不过, 这还不是完全的自我繁殖, 因为后代机器还没有对自身的描述, 它们因此不能复制自己。所以,冯诺伊曼继续假定最初的机器还必须包含一个描述复制器,一旦后代机器产生岀来,它也从亲代那里复制一份关于自身的描述, 这样, 后代机器就可以无穷无尽地繁殖下去。 冯诺伊曼的试验揭示了一个深刻的问题:任何自我繁殖的系统的基因材料,无论是自然的还是人工的, 都必须具有两个不同的基本功能: 一方面它必须起到计算机程序的作用, 是一种在繁殖下一代时能够运行的算法, 另一方面它必须起到被动数据的作用, 是一个能够复制和传给下一代的描述。1953 年沃森和克里克揭示的DNA 结构和自我复制的机理。DNA 的特性正好具备冯诺伊曼所指岀的两个要求。 然而, 冯诺伊曼对他自己的动力学模型并不十分满意。他不能充分地获得最小的逻辑前提, 因为该模型仍然以具体的原材料的吸收为前提。冯诺伊曼感到, 该模型没有很好地把过程的 逻辑形式和过程的物质结构区分开。作为一个数学家,冯诺伊曼需要的是完全形式化的抽象理

交通流元胞自动机模型综述

第23卷 第1期2006年1月 公 路 交 通 科 技 Journal of Highway and Transportation Research and Development Vol .23 No .1 Jan .2006 文章编号:1002-0268(2006)01-0110-05 收稿日期:2004-09-27 作者简介:郑英力(1971-),女,福建宁德人,讲师,研究方向为交通控制与仿真.(z hengyl71@s ina .com ) 交通流元胞自动机模型综述 郑英力,翟润平,马社强 (中国人民公安大学 交通管理工程系,北京 102623) 摘要:随着交通流模拟的需要及智能交通系统的发展,出现了基于元胞自动机理论的交通流模型。交通流元胞自动机模型由一系列车辆运动应遵守的运动规则和交通规则组成,并且包含驾驶行为、外界干扰等随机变化规则。文章介绍了交通流元胞自动机模型的产生与发展,总结和评述了国内外各种元胞自动机模型,并对元胞自动机模型的发展提出展望。 关键词:元胞自动机;交通流;微观模拟;模型中图分类号:U491.1+23 文献标识码:A Survey of Cellular Automata Model of Traffic Flow ZH ENG Ying -li ,ZH AI Run -p ing ,MA She -q iang (Department of Traffic Management Engineering ,Chinese People 's Public Security University ,Beijing 102623,China )Abstract :With the increas ing demand of traffic flow si mulation and the development of ITS research ,the traffic flow model based on cellular automata has been developed .Cellular automata model of traffic flow incorporates a series of vehicle movement rules and traffic regulations .Meanwhile ,the model works under some stochastic rules takin g into consideration of drivers 'behaviors and ambient interfer -ences .This paper introduces the establishment and development of cellular automata model of traffic flow ,su mmarizes and comments on different kinds of typical cellular automata models of traffic flow ,and furthermore ,presents a new perspective for further stud y of the model . Key words :Cellular automata ;Traffic flow ;Microscopic simulation ;Model 0 引言 交通流理论是运用物理学和数学定律来描述交通特性的理论。经典的交通流模型主要有概率统计模 型、车辆跟驰模型、流体动力学模型、车辆排队模型等 [1] 。20世纪90年代,随着交通流模拟的需要及智 能交通系统的发展,人们开始尝试将物理学中的元胞自动机(Cellular Automata ,简称CA )理论应用到交通领域,出现了交通流元胞自动机模型。 交通流C A 模型的主要优点是:(1)模型简单,特别易于在计算机上实现。在建立模型时,将路段分 为若干个长度为L 的元胞,一个元胞对应一辆或几辆汽车,或是几个元胞对应一辆汽车,每个元胞的状态或空或是其容纳车辆的速度,每辆车都同时按照所建立的规则运动。这些规则由车辆运动应遵守的运动规则和交通规则组成,并且包含驾驶行为、外界干扰等随机变化规则。(2)能够再现各种复杂的交通现象,反映交通流特性。在模拟过程中人们通过考察元胞状态的变化,不仅可以得到每一辆车在任意时刻的速度、位移以及车头时距等参数,描述交通流的微观特性,还可以得到平均速度、密度、流量等参数,呈现交通流的宏观特性。

元胞自动机与Matlab

元胞自动机与MATLAB 引言 元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状态。变化规则适用于每一个元胞并且同时进行。典型的变化规则,决定于元胞的状态,以及其(4或8 )邻居的状态。元胞自动机已被应用于物理模拟,生物模拟等领域。本文就一些有趣的规则,考虑如何编写有效的MATLAB的程序来实现这些元胞自动机。 MATLAB的编程考虑 元胞自动机需要考虑到下列因素,下面分别说明如何用MATLAB实现这些部分。并以Conway的生命游戏机的程序为例,说明怎样实现一个元胞自动机。 ●矩阵和图像可以相互转化,所以矩阵的显示是可以真接实现的。如果矩阵 cells的所有元素只包含两种状态且矩阵Z含有零,那么用image函数来显示cat命令建的RGB图像,并且能够返回句柄。 imh = image(cat(3,cells,z,z)); set(imh, 'erasemode', 'none') axis equal axis tight ●矩阵和图像可以相互转化,所以初始条件可以是矩阵,也可以是图形。以下 代码生成一个零矩阵,初始化元胞状态为零,然后使得中心十字形的元胞状态= 1。 z = zeros(n,n); cells = z; cells(n/2,.25*n:.75*n) = 1; cells(.25*n:.75*n,n/2) = 1; ●Matlab的代码应尽量简洁以减小运算量。以下程序计算了最近邻居总和,并 按照CA规则进行了计算。本段Matlab代码非常灵活的表示了相邻邻居。 x = 2:n-1; y = 2:n-1; sum(x,y) = cells(x,y-1) + cells(x,y+1) + ... cells(x-1, y) + cells(x+1,y) + ... cells(x-1,y-1) + cells(x-1,y+1) + ... cells(x+1,y-1) + cells(x+1,y+1); cells = (sum==3) | (sum==2 & cells); ●加入一个简单的图形用户界面是很容易的。在下面这个例子中,应用了三个 按钮和一个文本框。三个按钮,作用分别是运行,停止,程序退出按钮。文框是用来显示的仿真运算的次数。

元胞自动机在城市扩展方面的应用综述

元胞自动机在城市扩展方面的应用综述 摘要 本文在介绍元胞自动机各要素的基础上,综述了元胞自动机用于城市扩展模拟的历史、元胞自动机用于城市扩展模拟的具体研究方向,即在具体的模型中如何确定模型的结构和参数,并对其未来的发展趋势进行了展望,并指出CA 中的转换规则的扩展是在将来的研究中的一个首要问题。 关键字:元胞自动机;城市扩展模拟;转换规则 一引言 元胞自动机(CA)是一种时间、空间、状态都离散,空间的相互作用及时间上的因果关系皆局部的网格动力学模型,其“自下而上”的研究思路,强大的复杂计算功能、固有的平行计算能力、高度动态以及具有空间概念等特征,使得它在模拟空间复杂系统的时空动态演变方面具有很强的能力。在城市空间动态变化的模拟研究方面, CA模型已应用到除非洲、南极洲的所有大洲的城市模拟研究当中。 CA模型和GIS的集成,一方面增强GIS的空间模型运算及分析能力,另一方面, GIS提供的强大空间处理能力可以为CA模型准备数据和定义有效的元胞转换规则以及对模拟结果进行可视化。同时CA模型还可以与神经网络、主成分分析、遗传算法、模糊逻辑以及其他研究方法相结合,以增强其在城市空间变化模拟研究方面的能力。将CA与MAS技术相结合,建立一个能够模拟多个不同参与因子(自然系统) 、不同决策者(人文系统)共同影响下的城市发展模型,以此来模拟与预测城市发展的真实状况,将是CA模型在城市空间变化模拟与预测研究中的未来发展趋势。 国内元胞自动机应用研究起步较晚,受国际研究的推动,20世纪90年代末地理学界才开始类似的尝试研究,主要集中在基于元胞自动机的LUCC和城市增长模拟,罗平从经典地理过程分析的基本理论人手,分析和阐述了CA对于经典,地理过程分析概念的表达程度的局限性,综合地理系统的几何属性和非几何属性提出了基于地理特征概念的元胞自动机(GeoFeature 一CA),周成虎等人在Batty和Xie的DUEM模型的基础上,构建了面向对象的、随机的、不同构的和两个CA模型耦合的GeoCA—Urban模型,并成功模拟了深圳特区土地利用动态演化过程。何春阳、史培军等从宏观外部约束性因素和局部城市单元自身扩展能力变化的角度建立元胞自动机模型对北京地区城市发展过程进行了模拟重建和不同情景预测。 本文在介绍元胞自动机原理的基础上,对比国内外元胞自动机在城市扩展方面的研究现状和新进展,总结近年来元胞自动机研究的热点和聚焦所在,对其未来的发展趋势进行预测。

元胞自动机NaSch模型及其MATLAB代码

元胞自动机N a S c h模型 及其M A T L A B代码 This manuscript was revised by the office on December 22, 2012

元胞自动机N a S c h模型及其M A T L A B代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: 模型参数取值:Lroad=1000,p=0.3,Vmax=5。 边界条件:周期性边界。 数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。 基本图(流量-密度关系):需整个密度范围内的。 时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致,画500个时间步即可)。 指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。 流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 时间、空间和车辆速度都被整数离散化。道路被划分为等距离的离散的格子,即元胞。 每个元胞或者是空的,或者被一辆车所占据。 车辆的速度可以在(0~Vmax)之间取值。 2、NaSch模型运行规则 在时刻t到时刻t+1的过程中按照下面的规则进行更新: (1)加速:vnmin(vn1,vmax) 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:vnmin(vn,dn) 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化:以随机概率p进行慢化,令:vnmin(vn-1,0) 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:vnxnvn,车辆按照更新后的速度向前运动。其中vn,xn分别表示第n辆车位置和速度;l(l≥1)为车辆长度; p表示随机慢化概率;dnxn1xn1表示n车和前车n+1之间空的元胞数; vmax为最大速度。 3、NaSch模型实例

城市规划-元胞自动机

元胞自动机-城市规划 城市规模设计 雄安新区占地总面积约为2000平方公里,涉及河北省雄县、容城、安新3个县及周边部分区域,地处北京、天津、保定腹地,通过ArcGIS地图软件搜索该区域并从中提取出来,区域图如下所示。 图5 雄安新区区域图 为对雄安新区进行更好的仿真模拟,首先先在地图中截取雄安新区地图,然后进行边缘轮廓提取和白洋淀等不可开发地区的剔除,获得预处理图像。最后用MATlAB进行图像灰度化、二值化处理如下图所示。为后续元胞自动机提供演变地图。 图6 Matlab识别图 城市规划CA模型总步骤: 1: Step首先确定其组成的主要元素:元胞、元胞空间、元胞状态、元胞邻域及转变规则 2: Step分析模拟城市空间结构;

3:Step 确定模型的参数:繁殖参数、扩散参数、传播参数及受规划约束参数 4:Step 确定模型所需元胞转换规则的定义 5:Step 进行城市发展模拟。 ①本文提取的雄安新区地图像素为135109m m ?,元胞空间定义为11m m ?;元胞状态对应的是该地的四种状态:未城市化(即对应能开发还未开发的区域),城市化,扩展中心城市,不能被开发(如白洋淀等区域)。土地状态用编码表示。 ②元胞邻域选取为on V Neumann 邻居,在CA 系统中一个元胞1t +时刻的状态取决于它t 时刻与它邻域内其他元胞状态,考虑到地区之间发展限制因素较多,所以选取邻域较少的Neumann V on 邻居型[7]。 on V Neumann 邻居型数学定义为: ()(){} 20,,1|||||,Z v v v v v v v v v N iy ix oy iy x ix iy ix i ∈≤-+-== (4.18) 式(18)中i v 、y v 为中心元胞邻居元胞的行列坐标值,ax v 、oy v 为中心元胞的行列坐标值。 ③模型参数 借鉴参考文献[7]中的CA 模型设置了以下几个主要参数来描述城市发展[7]。 1.扩散参数diffusion :在自然增长规则下,扩散参数可以表示一个城市化单元格元胞可能转换成另一个城市化单元格元胞的次数 2.繁殖参数breed :在新中心传播增长规则中,繁殖参数用于一个城市化元胞可能转变成为一个新的中心传播城市化元胞 3.传播参数spread :在边界增长的规则下,用于一个扩散中心的已城市化的邻居元胞转变为城市化的可能性 4.规划系数参数onst int C ra :城市规划是城市工程建设和城市管理中基本依据之一,规划系数的变化对规划区最终达成的效果有约束作用[7] 模型转换规则: ④元胞的转换规则是指元胞状态的演化过程的法则,当前中心元胞和邻居元胞所处的状态决定下一个时刻贵中心状态的动力学函数,即一个状态转移函数[7]。 ()11 :,t t t i i n f s f s s ++= (4.19) 式(4.19)中t i s 表示中心元胞i 在t 时刻的状态,t n s 为t 时刻的邻居状态的组 合,1t i s +为中心元胞i 在1t +时刻所处的状态,f 为映射函数,即为元胞局部运动规则[7]。 ⑤在传统的CA 模型转换规则上进行扩展,规则为:边界增长规则、自然增长规则、新扩展中心型增长规则及受规划系数影响增长规则[7]。 1.边界增长规则:原有城市元胞边缘一定区域内,随着城市化发展,城市向外扩展,生成一个新的城市化元胞,体现了城市发展的集聚效应[7]。规定对于

元胞自动机在城市土地利用规划中的应用

元胞自动机在城市土地利用规划中的应用 一.研究背景及进展 1.1城市土地利用研究背景和进展 随着中国社会主义市场经济体制的不断完善,计划导向的土地利用规划也逐步向社会主义市场经济体制下的土地利用规划转变。借鉴国际上市场经济国家土地利用规划的经验,建立具有中国特色的土地利用规划体系成为必然。对国际上土地利用规划的对比研究有以下主要观点: 美国的土地利用规划更多采用公众参与的方法,参与者包括房屋所有人、社会活动家、房地产开发商、联邦和州政府、规划委员会以及民选官员包括城市议会会员。同时,美国基于可持续发展的土地利用规划设计了保护生态环境、维持生态平衡、注重新技术的应用、提高土地利用效率和控制人口增长的一系列政策。 联合国粮食与农业组织(FAO)的土地利用规划指南强调土地利用规划作为最佳土地利用的选择,是以土地评价为基础的,而且不仅包括自然的适宜性评价,也包括经济效益的评价和环境效应的检验,这是编制规划方案和方案选择的科学基础。 英国规划的体系由国家级规划、区域性规划、郡级规划、区级规划组成。国家级规划叫规划政策指南,提出全国性的土地利用方针政策,以白皮文件的形式下发。地区规划又叫区域规划指南,通过召开区域协调会议制定。郡级规划也叫结构规划,由每一个郡级的规划机关在土地测量基础上,与相关委员会协商后提出本郡土地利用的方针、政策及发展的框架结构。区级规划也叫地方规划,是一种详细的发展和实施规划。 科学发展观对土地利用规划的科学性提出了较高的要求,土地利用规划的应用基础研究尤为重要。从2002年国土资源部启动12个县级规划试点工作,2003年又启动14个地(市)级规划修编试点,2004年土地利用规划修编的重新开始,到2005年关于土地利用规划前期研究工作的国办[32]文的颁布,新一轮土地利用规划稳步开展。相应的土地利用规划相关研究也日益深入,但与城市规划相比,与作为中国空间规划重要组成部分的地位要求还有一定差距。但这些研究的广泛开展标志着中国土地利用规划逐渐走上了新的轨道,是提高中国土地利用规划科学性的重要基础。 城市总体规划和土地利用规划同属空间规划,受空间规划理论和方法的指导。从发展历程而言,两者都经历了开发、发展、控制和保护的不同阶段,或者是物质规划、生态规划、社会规划、文化规划等不同的阶段;就指导理论而言,更具有大体一致的内容;而就实体理论而言,由于规划具体内容的不同而有所差别。但在具体的技术和方法上,都是针对空间问题进行分析、预测和布局的,因而具有相似的方法。两个规划在理论和方法上的一致成为未来两个规划走向一体化的基础[1]。 1.2元胞自动机的研究背景及进展 元胞自动机即Cellular Automata,称作单元自动机,简称CA。起源于20世纪40年代,“现代计算机之父”冯.诺伊曼设计可自我复制的自动机时,参照了生物现象的自繁殖原理,提出了元胞自动机的概念和模型。它是一时间和空间都离散的动力系统,散步在规则格网中的每一元胞取有限的离散状态,遵循同样的作用规则,依据确定的局部规则同步更新,大量元胞通过简单的相互作用而构成动态系统的演化,不同于一般的动力学模型,元胞自动机不

相关文档
最新文档