高考数学导数题型归纳(文科)

高考数学导数题型归纳(文科)
高考数学导数题型归纳(文科)

文科导数题型归纳

请同学们高度重视:

首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在

其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('

=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;

其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

(请同学们参看2010省统测2)

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,

4323()1262

x mx x f x =--

(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;

(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.

解:由函数4323()1262x mx x f x =-- 得32

()332

x mx f x x '=-- 2()3g x x mx ∴=--

(1)()y f x =Q 在区间[]0,3上为“凸函数”,

则 2

()30g x x mx ∴=--<在区间[0,3]上恒成立

解法一:从二次函数的区间最值入手:等价于max ()0g x <

2

30m m

?>-< 解法二:分离变量法:

∵当0x =时, 2

()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立

等价于233

x m x x x ->=-的最大值(03x <≤)恒成立, 而3

()h x x x

=-(03x <≤)是增函数,则max ()(3)2h x h ==

2m ∴>

(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2

()30g x x mx =--< 恒成立

变更主元法

再等价于2

()30F m mx x =-+>在2m ≤恒成立(视为关于

m 的一次函数最值问题)

30110x >?-<<> 请同学们参看2010第三次周考: 例2:设函数),10(323

1)(223

R b a b x a ax x x f ∈<<+-+-

= (Ⅰ)求函数f (x )的单调区间和极值;

(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

(二次函数区间最值的例子)

解:(Ⅰ)()()2

2

()433f x x ax a x a x a '=-+-=---

01a <

令,0)(>'x f 得)(x f 令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)

∴当x=a 时,)(x f 极小值=;4

33

b a +-

当x=3a 时,)(x f 极大值=b. (Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2

2

43a x ax a a -≤-+≤恒成立①

则等价于()g x 这个二次函数max min ()()g x a

g x a

≤??

≥-?22()43g x x ax a =-+的对称轴

2x a =01,a <+=(放缩法)

即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.

max min ()(2)2 1.()(1)4 4.

g x g a a g x g a a =+=-+=+=-+

于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于

(2)44,4

1.(1)215g a a a a g a a a

+=-+≤?≤≤?

+=-+≥-?解得 又,10<

.15

4

<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系

第三种:构造函数求最值

题型特征:)()(x g x f >恒成立0)()()(>-=?x g x f x h 恒成立;从而转化为第一、二种题型

例3;已知函数32

()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,

32

6()(1)3(0)2

t g x x x t x t -=+

-++> (Ⅰ)求,a b 的值;

(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;

(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 解:(Ⅰ)/

2

()32f x x ax =+∴/(1)31f b a

?=-?=+?, 解得3

2a b =-??=-?

(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]-

(Ⅲ)令2

()()()(1)3

[1,4]2

t h x f x g x x t x x =-=-++-∈ 思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2

(2)26t x x x -≥-分离变量

思路2:二次函数区间最值

二、题型一:已知函数在某个区间上的单调性求参数的范围

2x a =

[]1,

2a a ++

解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立,回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集

例4:已知R a ∈,函数x a x a x x f )14(2

1121)(2

3++++=

. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),

(∞+-∞上的单调函数,求a 的取值范围.

解:

)14()1(4

1)(2

++++=

'a x a x x f . (Ⅰ)∵

()f x '是偶函数,∴1-=a . 此时x x x f 3121)(3-=,34

1

)(2-='x x f ,

0)(='x f ,解得:32±=x .

列表如下:

可知:

()f x 的极大值为34)32(=-f ,()f x 的极小值为34)32(-=f .

(Ⅱ)∵函数

)(x f 是),(∞+-∞上的单调函数,

2

1()(1)(41)04

f x x a x a '=

++++≥,在给定区间R 上恒成立判别式法 则22

1(1)4(41)204

a a a a ?=+-??+=-≤,解得:02a ≤≤.

综上,a 的取值范围是}20{≤≤a a .

例5、已知函数3211

()(2)(1)(0).32

f x x a x a x a =

+-+-≥ (I )求()f x 的单调区间;

(II )若()f x 在[0,1]上单调递增,求a 的取值范围。子集思想 (I )2

()(2)1(1)(1).f x x a x a x x a '=+-+-=++-

1、2

0,()(1)0,a f x x '==+≥当时恒成立

当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。 2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且

单调增区间:(,1),(1,)a -∞--+∞ 单调增区间:(1,1)a --

(II )当()[0,1],f x Q 在上单调递增则[]0,1是上述增区间的子集:

1、0a =时,()(,)f x -∞+∞在单调递增 符合题意

2、[]()0,11,a ?-+∞,10a ∴-≤1a ∴≤ 综上,a 的取值范围是[0,1]。

三、题型二:根的个数问题

题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题 解题步骤

第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”; 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与

0的关

系;

第三步:解不等式(组)即可; 例6、已知函数232)1(31)(x k x x f +-=

,kx x g -=3

1

)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;

(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.

解:(1)由题意x k x x f )1()(2

+-='∵)(x f 在区间),2(+∞上为增函数,

∴0)1()(2

>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)

即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k

(2)设3

12)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h 令0)(='x h 得k x =或1=x 由(1)知1≤k ,

①当1=k 时,0)1()(2

≥-='x x h ,)(x h 在R 上递增,显然不合题意… ②当1

x ),(k -∞ k

)1,(k 1 ),1(+∞ )(x h ' + 0 — 0 + )(x h

↗ 极大值3

12623-+-k k

↘ 极小值 21-k ↗ 由于02

1<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,

a-1

-1

()f x '

故需0312623>-+-k k ,即0)22)(1(2

<---k k k ∴???>--<0

2212k k k ,解得31-

根的个数知道,部分根可求或已知。 例7、已知函数3

2

1()22

f x ax x x c =+

-+ (1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;

(2)若2

1()2

g x bx x d =

-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点?若存在,求出实数b 的取值范围;否则说明理由。

解:(1)∵()f x 的图像过原点,则(0)00f c =?=2()32f x ax x '=+-,

又∵1x =-是()f x 的极值点,则(1)31201f a a '-=--=?=-

2()32(32)(1)0f x x x x x '∴=+-=-+=

3()(1)2f x f =-=

极大值222

()()37

f x f ==-极小值

(2)设函数()g x 的图像与函数()f x 的图像恒存在含1x =-的三个不同交点,

等价于()()f x g x =有含1x =-的三个根,即:1

(1)(1)(1)2

f g d b -=-?=-

- 322111

2(1)222x x x bx x b ∴+-=---整理得:

即:32

11(1)(1)022

x b x x b ---+-=恒有含1x =-的三个不等实根

(计算难点来了:)3211

()(1)(1)022

h x x b x x b =---+-=有含1x =-的根,

则()h x 必可分解为(1)()0x +=二次式,故用添项配凑法因式分解,

3x 22x x +-211

(1)(1)022b x x b ---+-=

2211(1)(1)(1)022x x b x x b ??

+-++--=????

22

1(1)(1)2(1)02

x x b x x b ??+-++--=?? 十字相乘法分解:[]()21

(1)(1)(1)102

x x b x b x +-+--+=

211(1)(1)(1)022x x b x b ??

+-++-=????

3211

(1)(1)022

x b x x b ∴---+-=恒有含1x =-的三个不等实根

等价于2

11(1)(1)022x b x b -++-=有两个不等于-1的不等实根。

2

211(1)4(1)04211(1)(1)(1)022

b b b b ??=+-?->?????-+++-≠??(,1)(1,3)(3,)b ?∈-∞-?-?+∞ 题2:切线的条数问题====以切点0x 为未知数的方程的根的个数

例7、已知函数3

2

()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为(1,3),求:(1)()f x 的解析式;(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范围.

(1)由题意得:2'()323(1)(3),(0)f x ax bx c a x x a =++=--<

∴在(,1)-∞上'()0f x <;在(1,3)上'()0f x >;在(3,)+∞上'()0f x < 因此()f x 在01x =处取得极小值4-

∴4a b c ++=-①,'(1)320f a b c =++=②,'(3)2760f a b c =++=③

由①②③联立得:169a b c =-??=??=-?

,∴32

()69f x x x x =-+-

(2)设切点Q (,())t f t ,,

()()()y f t f t x t -=-

232(3129)()(69)y t t x t t t t =-+--+-+-

222(3129)(3129)(69)t t x t t t t t t =-+-+-+--+ 22(3129)(26)t t x t t t =-+-+-过(1,)m - 232(3129)(1)26m t t t t =-+--+- 32()221290g t t t t m =--+-=

令2

2

'()66126(2)0g t t t t t =--=--=, 求得:1,2t t =-=,方程()0g t =有三个根。 需:(1)0(2)0g g ->??

???--+-

11

m m

>-? 故:1116m -<<;因此所求实数m 的范围为:(11,16)-

题3:已知()f x 在给定区间上的极值点个数则有导函数=0的根的个数

解法:根分布或判别式法

例8、

解:函数的定义域为R (Ⅰ)当m =4时,f (x )= 13x 3-7

2

x 2+10x ,

()f x '=x 2-7x +10,令()0f x '> , 解得5,x >或2x <.

令()0f x '< , 解得25x <<

可知函数f (x )的单调递增区间为(,2)-∞和(5,+∞),单调递减区间为()2,5. (Ⅱ)()f x '=x 2-(m +3)x +m +6,

要使函数y =f (x )在(1,+∞)有两个极值点,()f x '?=x 2-(m +3)x +m +6=0的根在(1,+∞)

根分布问题:

则2(3)4(6)0;(1)1(3)60;3 1.2

m m f m m m ?

??=+-+>?

'=-+++>??+?>?, 解得m >3

例9、已知函数23213)(x x a x f +=

,)0,(≠∈a R a (1)求)(x f 的单调区间;

(2)令()g x =1

4

x 4+f (x )(x ∈R )有且仅有3个极值点,求a 的取值范围. 解:(1))1()(2

'

+=+=ax x x ax x f

当0>a 时,令0)('

>x f 解得01>-

<<-x a

, 所以)(x f 的递增区间为),0()1,(+∞--∞Y a ,递减区间为)0,1

(a

-.

当0

()0,(+∞--∞a

Y . (2)432

113)42

(g a x x x x =++有且仅有3个极值点

?223(1())ax x x x x x a g x +=+'+=+=0有3个根,则0x =或210x ax ++=,2a <-

方程2

10x ax ++=有两个非零实根,所以2

40,a ?=->

2a ∴<-或2a >

1

而当2a <-或2a >时可证函数()y g x =有且仅有3个极值点

其它例题:

1、(最值问题与主元变更法的例子).已知定义在R 上的函数3

2

()2f x ax ax b =-+)

(0>a 在区间[]2,1-上的最大值是5,最小值是-11.

(Ⅰ)求函数()f x 的解析式;

(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 解:(Ⅰ)3

2

'

2

()2,()34(34)f x ax ax b f x ax ax ax x =-+∴=-=-Q 令'

()f x =0,得[]124

0,2,13

x x ==

?-

因此)0(f 必为最大值,∴50=)(f 因此5=b , (2)165,(1)5,(1)(2)f a f a f f -=-+=-+∴>-Q ,

即11516)2(-=+-=-a f ,∴1=a ,∴.52(2

3+-=x x x f )

(Ⅱ)∵x x x f 43)(2

-=',∴0(≤+'tx x f )

等价于0432≤+-tx x x , 令x x xt t g 43)(2

-+=,则问题就是0)(g ≤t 在]1,1[-∈t 上恒成立时,求实数x 的取值范围,

为此只需???≤≤-0)10

)1((g g ,即???≤-≤-0

05322x x x x ,

解得10≤≤x ,所以所求实数x 的取值范围是[0,1].

2、(根分布与线性规划例子)

(1)已知函数322

()3

f x x ax bx c =+++

(Ⅰ) 若函数()f x 在1=x 时有极值且在函数图象上的点(0,1)处的切线与直线30x y +=平行,求

)(x f 的解析式;

(Ⅱ) 当()f x 在(0,1)x ∈取得极大值且在(1,

2)x ∈取得极小值时, 设点(2,1)M b a -+所在平

面区域为S, 经过原点的直线L 将S 分为面积比为1:3的两部分, 求直线L 的方程.

解:(Ⅰ).由2

()22f x x ax b '=++, 函数()f x 在1=x 时有极值 ,

∴220a b ++= ∵(0)1f =∴1c =

又∵()f x 在(0,1)处的切线与直线30x y +=平行, ∴(0)3f b '==- 故 12

a = ∴32

21()3132

f x x x x =

+-+……………………. 7分 (Ⅱ) 解法一: 由2

()22f x x ax b '=++及()f x 在(0,1)x ∈取得极大值且在(1,2)x ∈取得极小值,

∴(0)0

(1)0(2)0f f f '>??

'? 即 0220480b a b a b >??

++?

令(,)M x y , 则 2

1x b y a =-??

=+?

∴12a y b x =-??=+?∴20

220460

x y x y x +>??++?

故点M 所在平面区域S 为如图△ABC, 易得(2,

0)A -, (2,1)B --, (2,2)C -, (0,1)D -, 3

(0,)2

E -, 2ABC S ?=

同时DE 为△ABC 的中位线, 1

3

DEC

ABED S S ?=四边形 ∴ 所求一条直线L 的方程为:0x =

另一种情况设不垂直于x 轴的直线L 也将S 分为面积比为1:3的两部分, 设直线L 方程为y kx =,它与AC,BC 分别交于F 、G , 则 0k >, 1S =四边形DEGF

由 220y kx y x =??

++=?

得点F 的横坐标为:2

21F x k =-+

由 460

y kx y x =??

++=? 得点G 的横坐标为:6

41G x k =-+

∴OGE OFD S S S ??=-四边形DEGF 61311222214121

k k =??-?+?=+即 216250k k +-=

解得: 12k =

或 58k =- (舍去) 故这时直线方程为:1

2

y x = 综上,所求直线方程为:0x =或1

2

y x = .…………….………….12分

(Ⅱ) 解法二: 由2

()22f x x ax b '=++及()f x 在(0,1)x ∈取得极大值且在(1,

2)x ∈取得极小值,

∴(0)0(1)0(2)0f f f '>??

'? 即 0220480b a b a b >??

++?

令(,)M x y , 则 2

1x b y a =-??

=+?

∴12a y b x =-??=+?∴20

220460

x y x y x +>??++?

故点M 所在平面区域S 为如图△ABC, 易得(2,

0)A -, (2,1)B --, (2,2)C -, (0,1)D -, 3

(0,)2

E -, 2ABC S ?=

同时DE 为△ABC 的中位线, 1

3

DEC

ABED S S ?=四边形∴所求一条直线L 的方程为:0x = 另一种情况由于直线BO 方程为:1

2

y x =

, 设直线BO 与AC 交于H , 由 12

220

y x y x ?=???++=? 得直线L 与AC 交点为:1(1,)2H -- ∵2ABC

S ?=, 111

2222

DEC S ?=??=, 11222211122H ABO AOH

S S S ???=-=??-??=AB ∴ 所求直线方程为:0x = 或1

2

y x =

3、(根的个数问题)已知函数3

2

f(x)ax bx (c 3a 2b)x d (a 0)=++--+>的图象如图所示。

(Ⅰ)求c d 、的值;

(Ⅱ)若函数f(x)的图象在点(2,f(2))处的切线方程为3x y 110+-=,求函数f ( x )的解析式;

(Ⅲ)若0x 5,=方程f(x)8a =有三个不同的根,求实数a 的取值范围。 解:由题知:2

f (x)3ax 2bx+c-3a-2b '=+

(Ⅰ)由图可知函数f ( x )的图像过点( 0 , 3 ),且()1f '= 0

得332c 320d a b a b =??

++--=????

?==0

3

c d (Ⅱ)依题意()2f '= – 3 且f ( 2 ) = 5

124323

846435a b a b a b a b +--=-??

+--+=?

解得a = 1 , b = – 6 所以f ( x ) = x 3 – 6x 2 + 9x + 3

(Ⅲ)依题意f ( x ) = ax 3 + bx 2 – ( 3a + 2b )x + 3 ( a >0 )

()x f '= 3ax 2 + 2bx – 3a – 2b 由()5f '= 0?b = – 9a ①

若方程f ( x ) = 8a 有三个不同的根,当且仅当满足f ( 5 )<8a <f ( 1 ) ② 由①②得 – 25a + 3<8a <7a + 3?11

1

<a <3 所以当

11

1

<a <3时,方程f ( x ) = 8a 有三个不同的根。………… 12分 4、(根的个数问题)已知函数321

()1()3

f x x ax x a R =--+∈

(1)若函数()f x 在12,x x x x ==处取得极值,且122x x -=,求a 的值及()f x 的单调区间; (2)若12a <

,讨论曲线()f x 与215

()(21)(21)26

g x x a x x =-++-≤≤的交点个数. 解:(1)2

()21f'x x ax =--

12122,1x x a x x ∴+=?=-

122x x ∴-===

0a ∴=………………………………………………………………………2分

22()211f x x ax x '=--=-

令()0f x '>得1,1x x <->或 令()0f x '<得11x -<<

∴()f x 的单调递增区间为(,1)-∞-,(1,)+∞,单调递减区间为(1,1)-…………5分 (2)由题()()f x g x =得

322115

1(21)326

x ax x x a x --+=-++ 即32111

()20326

x a x ax -+++= 令32111

()()2(21)326

x x a x ax x ?=-+++-≤≤……………………6分

2()(21)2(2)(1)x x a x a x a x ?'∴=-++=--

令()0x ?'=得2x a =或1x =……………………………………………7分

12

a <

Q 当2a ≤-即时

此时,9

802

a --

>,0a <,有一个交点;…………………………9分 当22a ≥-即1

1

a -<<时,

2(32)036

a a -+>Q , ∴当9802a -->即9

116a -<<-时,有一个交点;

当98002a a --≤≤,且即9

016a -≤≤时,有两个交点;

当102a <<时,9

802a --<,有一个交点.………………………13分

综上可知,当916a <-或1

02a <<时,有一个交点;

当9

016

a -≤≤时,有两个交点.…………………………………14分

5、(简单切线问题)已知函数23)(a

x x f =图象上斜率为3的两条切线间的距离为510

2,函数

23()()3bx

g x f x a

=-+.

(Ⅰ) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式;

(Ⅱ) 若函数)(x g 在区间]1,1[-上为增函数,且)(42

x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围.

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学导数题型归纳

导数题型归纳 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 例2:设函数),10(323 1)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值; (Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+ -++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例4:已知R a ∈,函数x a x a x x f )14(2 1121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是), (∞+-∞上的单调函数,求a 的取值范围.

例5、已知函数3211()(2)(1)(0).32 f x x a x a x a =+-+-≥ (I )求()f x 的单调区间; (II )若()f x 在[0,1]上单调递增,求a 的取值范围。子集思想 例6、已知函数232 )1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围; (2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y 在0x x 处的切线方程。方法: )(0x f 为在0x x 处的切线的斜率。 题型2 过点),(b a 的直线与曲线 )(x f y 的相切问题。 方法:设曲线 )(x f y 的切点))(,(00x f x ,由b x f x f a x )()()(000 求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。例 已知函数f (x )=x 3 ﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169y x ) (2)若过点A )2)(,1(m m A 可作曲线)(x f y 的三条切线,求实数 m 的取值范围、 (提示:设曲线 )(x f y 上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于 m x ,0的方 程有三个不同实数根问题。(答案: m 的范围是2,3) 题型3 求两个曲线)(x f y 、)(x g y 的公切线。方法:设曲线)(x f y 、)(x g y 的切点分别为( )(,11x f x )。()(,22x f x ); 建立 21,x x 的等式关系,12112)()(y y x f x x ,12 212 )()(y y x f x x ;求出21,x x ,进而求出 切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例 求曲线 2 x y 与曲线x e y ln 2的公切线方程。(答案02e y x e ) 二.单调性问题 题型1 求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与 0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与 0的 关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。例 已知函数x a x x a x f )1(2 1ln ) (2 (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)(2)若 e x ,2,求函数)(x f 的单调区间。(利用极值点与区间的关系分类) 题型2 已知函数在某区间是单调,求参数的范围问题。 方法1:研究导函数讨论。 方法2:转化为 0) (0) (' ' x f x f 或在给定区间上恒成立问题, 方法3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。 注意:“函数)(x f 在 n m,上是减函数”与“函数)(x f 的单调减区间是b a,”的区别是前者是后者的子集。 例已知函数2 () ln f x x a x + x 2在 , 1上是单调函数,求实数 a 的取值范围. (答案 , 0) 题型 3 已知函数在某区间的不单调,求参数的范围问题。 方法1:正难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。方法3:直接研究不单调,分情况讨论。 例 设函数 1) (2 3 x ax x x f ,R a 在区间 1,2 1内不单调,求实数 a 的取值范围。 (答案: 3, 2a ) )三.极值、最值问题。 题型1 求函数极值、最值。基本思路:定义域 → 疑似极值点 → 单调区间 → 极值→ 最值。 例 已知函数12 1)1() (2 kx x e k x e x f x x ,求在2,1x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类) 题型 2 已知函数极值,求系数值或范围。 方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。方法2.转化为函数单调性问题。 例 函数1)1(2 1)1(3 14 1) (2 3 4 x p p px x p x x f 。0是函数)(x f 的极值点。求实数 p 值。(答案:1)

导数题型方法总结绝对经典

第一章 导数及其应用 一.导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1 )(0 则的值是( ) A. 4 1- B. 2 C. 41 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()()00003,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

导数大题方法总结

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

导数题型方法总结(绝对经典)

第一章导数及其应用 一.导数的概念 1..已知的值是() A. B. 2 C. D. -2 变式1:() A.-1B.-2C.-3D.1 变式2:() A.B.C.D. 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 解:由函数得 (1)在区间上为“凸函数”, 则在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于

高中数学导数题型分类非常全

导数 1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =- '()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a = 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ '' '2 ()u u v uv v v -= 3.复合函数的求导法则:(整体代换) 例如:已知2()3sin (2)3f x x π =+,求'()f x 。 4.导数的物理意义:位移的导数是速度,速度的导数是加速度。 5.导数的几何意义:导数就是切线斜率。 6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。 【题型一】求函数的导数 1(1)ln x y x = (2)2sin(3)4y x π =- (3)2(1)x y e x =-

(4)3235y x x =-- (5)231 x x y x -=+ (6)221 1()y x x x x =++ 2.已知物体的运动方程为22 3s t t =+(t 是时间,s 是位移),则物体在 时刻2t =时的速度为 。 【题型三】导数与切线方程(导数的几何意义的应用) 3.曲线32y x x =+-在点(2,8)A 处的切线方程是 。 4.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。 5.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。 6.若23ln 4 x y x =-的一条切线垂直于直线20x y m +-=,则切点坐标为 。 7.函数12+=ax y 的图象与直线x y =相切, 则a = 。 8.已知曲线11 x y x += -在(3,2)处的切线与0ax y m ++=垂直,则a = 。 9.已知直线y x m =+与曲线321y x x =-+相切,求切点P 的坐标及参数m 的值。

相关文档
最新文档