高三数学 统计案例
高三数学教学中的实践案例分享

高三数学教学中的实践案例分享在高三数学教学中,提供实践案例的分享可以帮助学生更好地理解和应用数学知识。
通过真实案例的引入,学生能够理解数学知识在实际生活中的应用,提高学习兴趣和动力。
本文将分享一些高三数学教学中的实践案例,帮助教师和学生更好地应对数学学习的挑战。
1. 实践案例一:统计与概率假设有一所学校的校车每天搭载学生上下学。
为了提高运输效率,校方决定针对校车的乘客数量进行统计分析,并计算不同时间段的平均乘客人数。
学生们收集了一周的数据,并绘制了每天上下学时间段内的乘客人数柱状图。
教师可以利用这个实践案例帮助学生掌握统计与概率中的相关概念和方法,比如平均值、极差、频率分布等。
学生们可以通过计算每天的平均乘客人数和分析柱状图,进一步掌握统计数据的分析和解读能力。
2. 实践案例二:函数与图像假设学生们参加了一次数学竞赛,并且获得了一系列关于得分与时间的数据。
他们需要通过这些数据来绘制得分与时间之间的函数关系图,并进一步分析函数的特征。
教师可以利用这个实践案例帮助学生理解函数与图像的关系,并巩固函数的概念和性质。
学生们通过绘制函数图像、计算函数值和分析函数特征,可以更好地理解函数的变化规律和应用。
3. 实践案例三:几何与空间假设学生们参观了一座古建筑,并观察到建筑物中存在着一些几何形状,比如圆柱、球体、锥体等。
学生们需要通过测量和观察,计算这些几何形状的表面积和体积,并进一步分析它们的特征和应用。
教师可以利用这个实践案例帮助学生巩固几何与空间中的相关概念和计算方法。
学生们可以通过测量和计算几何形状的表面积和体积,进一步理解几何形状的性质和应用,提升几何计算能力。
通过以上实践案例的分享与探索,高三学生们可以更好地理解和应用数学知识。
实践案例的引入不仅能够提高学生对数学学习的兴趣和动力,还能够培养学生的实际问题解决能力和数学建模能力。
因此,教师们在高三数学教学中应充分利用实践案例的方法,提供更多真实、生动的案例,引导学生进行实际问题的解决和数学知识的应用。
高三数学统计案例试题答案及解析

高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D. 【考点】关联判断2. 对100只小白鼠进行某种激素试验,其中雄性小白鼠、雌性小白鼠对激素的敏感情况统计得到如下列联表由附表:则下列说法正确的是:( ) A .在犯错误的概率不超过的前提下认为“对激素敏感与性别有关”; B .在犯错误的概率不超过的前提下认为“对激素敏感与性别无关”; C .有以上的把握认为“对激素敏感与性别有关”; D .有以上的把握认为“对激素敏感与性别无关”; 【答案】C 【解析】因为,所以有以上的把握认为“对激素敏感与性别有关”.3. 设A 是由m×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m ,n)为所有这样的数表构成的集合。
对于A ∈S(m,n),记r i (A)为A 的第ⅰ行各数之和(1≤ⅰ≤m ),C j (A)为A 的第j 列各数之和(1≤j≤n ):记K(A)为∣r 1(A)∣,∣R 2(A)∣,…,∣Rm(A)∣,∣C 1(A)∣,∣C 2(A)∣,…,∣Cn(A)∣中的最小值。
对如下数表A ,求K (A )的值;11-0.8(2)设数表A ∈S (2,3)形如求K (A )的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【答案】(1)0.7 (2)1 (3)【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力【解析】(1)因为,所以不妨设.由题意得.又因为,所以,于是,,所以,当,且时,取得最大值1。
(3)对于给定的正整数t,任给数表如下,…任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表,并且,因此,不妨设,且。
【高中数学】高中数学必修(统计案例)

【高中数学】高中数学必修(统计案例)
通过典型案例,学习下列一些常见的统计方法,并能初步应用这些方法解决一些实际问题。
① 通过对典型病例(如“肺癌是否与吸烟有关”)的探索,了解独立性测试(仅2项要求)×2的基本思路、方法和列联表的初步应用)。
②通过对典型案例(如"质量控制"、"新药是否有效"等)的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用(参见例1)。
③ 通过对典型案例的探索(如《昆虫分类》等),了解聚类分析的基本思想、方法及初步应用。
④通过对典型案例(如"人的体重与身高的关系"等)的探究,进一步了解回归的基本思想、方法及初步应用。
2.推理和证明(约10学时)
(1)合情推理与演绎推理
① 结合所学的数学实例和生活中的实例,理解合理推理的意义,能够运用归纳和类比进行简单推理,体验和理解合理推理在数学发现中的作用(见例2和例3)。
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。
③ 通过具体实例,了解合理推理与演绎推理的关系和区别。
(2)直接证明与间接证明
① 结合所学的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思维过程和特点。
②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。
这篇文章是给你的
高中数学
必修(统计案例),希望对大家的学习有所帮助,不断进步,取得优异成绩。
高中数学知识点之统计及统计案例分析

高中数学知识点之统计及统计案例分析第十一编统计、统计案例§11.1 抽样方法1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,总体的一个样本是 . 答案 200个零件的长度2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的 . 答案①②③3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为 . 答案 3,9,184.(2019·广东理)某校共有学生2 000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 .女生男生答案 165.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n= .答案 80例1 某大学为了支援我国西部教育事业,决定从2019应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和随机数表法设计抽样方案.解抽签法:第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;第三步:将18个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员. 随机数表法:第一步:将18名志愿者编号,编号为01,02,03, (18)第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读;第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.第四步:找出以上号码对应的志愿者,就是志愿小组的成员.例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施.解(1)将每个人随机编一个号由0001至1003.(2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000.(4)分段,取间隔k=(5)从第一段即为0001号到0100号中随机抽取一个号l.(6)按编号将l,100+l,200+l,…,900+l共10个号码选出,这10个号码所对应的工人组成样本. 1000=100将总体均分为10段,每段含100个工人. 10一年级 373 377二年级 x 370三年级 y z例3 (14分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程. 解应采取分层抽样的方法. 过程如下:(1)将3万人分为五层,其中一个乡镇为一层.5分(2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×300×3252=60(人);300×=40(人);300×=100(人);300×=40(人); 151515153=60(人), 153分10分 12分 14分因此各乡镇抽取人数分别为60人,40人,100人,40人,60人. (3)将300人组到一起即得到一个样本.例4 为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人). 根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.解(1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100. (2)三种抽取方式中,第一种采用的是简单随机抽样法;第二种采用的是系统抽样法和简单随机抽样法;第三种采用的是分层抽样法和简单随机抽样法. (3)第一种方式抽样的步骤如下:第一步,首先用抽签法在这20个班中任意抽取一个班.第二步,然后从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩. 第二种方式抽样的步骤如下:第一步,首先用简单随机抽样法从第一个班中任意抽取一名学生,记其学号为a.第二步,在其余的19个班中,选取学号为a的学生,加上第一个班中的一名学生,共计20人. 第三种方式抽样的步骤如下:第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为:100∶1000=1∶10,所以在每个层次中抽取的个体数依次为150600250,,,即15,60,25. 101010第三步,按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.1.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台入样,问此样本若采用简单随机抽样方法将如何获得?解方法一首先,把机器都编上号码001,002,003,…,112,如用抽签法,则把112个形状、大小相同的号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取10次,就得到一个容量为10的样本. 方法二第一步,将原来的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如:选第9行第7个数“3”,向右读.第三步,从“3”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号74,100,94,52,80,3,105,107,83,92的机器便是要抽取的对象.2.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解(1)将624名职工用随机方式编号由000至623. (2)利用随机数表法从总体中剔除4人. (3)将剩下的620名职工重新编号由000至619. (4)分段,取间隔k=620=10,将总体分成62组,每组含10人. 62(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.3.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?解可用分层抽样方法,其总体容量为12 000.“很喜爱”占≈23(人);“一般”占[**************]5,应取60×≈12(人);“喜爱”占,应取60×[***********]00[**************]2,应取60×≈20(人);“不喜爱”占,应取60×≈5(人).因此采用分层抽样[***********]00在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人. 4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是(填序号). (1)②、③都不能为系统抽样 (2)②、④都不能为分层抽样(3)①、④都可能为系统抽样(4)①、③都可能为分层抽样答案 (4) 一、填空题1.(2019·安庆模拟)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为 . 答案 15,10,202.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为 . 答案系统抽样,简单随机抽样3.下列抽样实验中,最适宜用系统抽样的是(填序号).①某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样②某厂生产的2 000个电子元件中随机抽取5个入样③从某厂生产的2000个电子元件中随机抽取200个入样④从某厂生产的20个电子元件中随机抽取5个入样答案③4.(2019·重庆文)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是 .答案分层抽样法5.某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则下列判断不正确的是(填序号). ①高一学生被抽到的概率最大②高三学生被抽到的概率最大③高三学生被抽到的概率最小④每名学生被抽到的概率相等答案①②③6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 . 答案 67.(2019·天津文,11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人. 答案 108.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 . 答案 0795 二、解答题9.为了检验某种作业本的印刷质量,决定从一捆(40本)中抽取10本进行检查,利用随机数表抽取这个样本时,应按怎样的步骤进行?分析可先对这40本作业本进行统一编号,然后在随机数表中任选一数作为起始号码,按任意方向读下去,便会得到10个号码. 解可按以下步骤进行:第一步,先将40本作业本编号,可编为00,01,02, (39)第二步,在附录1随机数表中任选一个数作为开始.如从第8行第4列的数78开始.第三步,从选定的数78开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,由于16<39,将它取出;继续读下去,可得到19,10,12,07,39,38,33,21,后面一个是12,由于在前面12已经取出,将它去掉;再继续读,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取?解用分层抽样抽取. (1)∵20∶100=1∶5,∴702019=2,=14,=4555∴从副处级以上干部中抽取2人,一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人人数较少,可用抽签法从中分别抽取2人和4人;对一般干部可用随机数表法抽取14人. (3)将2人、4人、14人编号汇合在一起就得到了容量为20的样本.11.从某厂生产的10 002辆电动自行车中随机抽取100辆测试某项性能,请合理选择抽样方法进行抽样,并写出抽样过程. 解因为总体容量和样本容量都较大,可用系统抽样. 抽样步骤如下:第一步,将10 002辆电动自行车用随机方式编号;第二步,从总体中剔除2辆(剔除法可用随机数表法),将剩下的10 000辆电动自行车重新编号(分别为00001,00002,…,10000)并分成100段;第三步,在第一段00001,00002,…,00100这100个编号中用简单随机抽样抽出一个作为起始号码(如00006);第四步,把起始号码依次加间隔100,可获得样本.12.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.36nnn解总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取工程师×6=,n36366抽取技术人员抽取技工nn×12=(人), 363nn×18=(人). 362所以n应是6的倍数,36的约数即n=6,12,18,36.当样本容量为(n+1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为容量为6.3535,因为必须是整数,所以n只能取6,即样本§11.2 总体分布的估计与总体特征数的估计1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为 . 答案 52.(2019·山东理)右图是根据《山东统计年鉴2019》中的资料作成的1997年至2019年我省城镇居民百的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数民百户家庭人口数的个位数字.从图中可以得到1997年至2019年我省城镇居民百户家庭人口数的平均数答案 303.63.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率率分布直方图的高为h,则|a-b|= . 答案mh户家庭人口数字表示城镇居为 . 为m,该组在频4.(2019答案2 55.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 . 答案 40例1 在学校开展的综合实间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:践活动中,某班进行了小制作评比,作品上交时(1)本次活动共有多少件作品参加评比?抽取技术人员抽取技工nn×12=(人), 363nn×18=(人). 362所以n应是6的倍数,36的约数即n=6,12,18,36.当样本容量为(n+1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为容量为6.3535,因为必须是整数,所以n只能取6,即样本§11.2 总体分布的估计与总体特征数的估计1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为 . 答案 52.(2019·山东理)右图是根据《山东统计年鉴2019》中的资料作成的1997年至2019年我省城镇居民百的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数民百户家庭人口数的个位数字.从图中可以得到1997年至2019年我省城镇居民百户家庭人口数的平均数答案 303.63.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率率分布直方图的高为h,则|a-b|= . 答案mh户家庭人口数字表示城镇居为 . 为m,该组在频4.(2019答案2 55.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 . 答案 40例1 在学校开展的综合实间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:践活动中,某班进行了小制作评比,作品上交时(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?解(1)依题意知第三组的频率为4112=,又因为第三组的频数为12,∴本次活动的参评作品数为=60.5(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×(3)第四组的获奖率是∴第六组的获奖率为6=18(件).1105=,第六组上交的作品数量为60×=3(件),26=,显然第六组的获奖率高. 39例2 对某电子元件进行寿命追踪调查,情况如下:(1)列出频率分布表;(2)画出频率分布直方图;(3)估计电子元件寿命在100 h~400 h以内的概率;(4)估计电子元件寿命在400 h以上的概率. 解(1)样本频率分布表如下:(2)频率分布直方图(3)由频率分布表可以看出,寿命在100 h~400 h的电子元件出现的频率为0.65,所以我们估计电子元件寿命在 100 h~400 h的概率为0.65.(4)由频率分布表可知,寿命在400 h以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h以上的概率为0.35.例3 为了解A,B两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每一个轮胎行驶的最远里程数(单位:1 000 km)轮胎A 96,112, 97, 108, 100, 103, 86, 98 轮胎B 108, 101, 94, 105, 96, 93, 97, 106 (1)分别计算A,B两种轮胎行驶的最远里程的平均数,中位数;(2)分别计算A,B两种轮胎行驶的最远里程的极差、标准差;(3)根据以上数据你认为哪种型号的轮胎性能更加稳定?解(1)A轮胎行驶的最远里程的平均数为:=100,中位数为: =99; B轮胎行驶的最远里程的平均数为:82=100,中位数为:=99.82(2)A轮胎行驶的最远里程的极差为:112-86=26,标准差为: s==8≈7.43; 2B轮胎行驶的最远里程的极差为:108-93=15,标准差为:82(3)由于A和B的最远行驶里程的平均数相同,而B轮胎行驶的最远里程的极差和标准差较小,所以B轮胎性能更加稳定.例4(14分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:甲:102, 101,乙:110, 115, 99, 90,98, 85,103, 75,98, 115,99; 110.(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定. 解(1)因为间隔时间相同,故是系统抽样. (2)茎叶图如下:5分(3)甲车间:平均值: 1=2分1(102+101+99+98+103+98+99)=100, 727分 9分方差:s1=乙车间:1222[(102-100)+(101-100)+…+(99-100)]≈3.428 6. 7平均值:2=方差:s2=21(110+115+90+85+75+115+110)=100, 711分 13分 14分1222[(110-100)+(115-100)+…+(110-100)]≈228.571 4. 722∵1=2,s1<s2,∴甲车间产品稳定.1.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?解(1)第四小组的频率=1-(0.1+0.3+0.4)=0.2.第一小组频数(2)设参加这次测试的学生人数是n,则有n==5÷0.1=50(人).第一小组频率(3)因为0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,即第一、第二、第三、第四小组的频数分别为5、15、20、10,所以学生跳绳次数的中位数落在第三小组内.2.从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下:(单位:分)[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例;(4)估计成绩在85分以下的学生比例. 解(1)频率分布表如下:(2)频率分布直方图如图所示.(3)成绩在[60,90)的学生比例即为学生成绩在[60,90)的频率,即为(0.20+0.30+0.24)×100%=74%. (4)成绩在85分以下的学生比例即为学生成绩不足85分的频率. 设相应的频率为由=,故估计成绩在85分以下的学生约占72%.3.有甲、乙两位射击运动员在相同条件下各射击10次,记录各次命中环数;甲:8,8,6,8,6,5,9,10,7,4 乙:9,5,7,8,7,6,8,6, 8,7 (1)分别计算他们环数的标准差;(2)谁的射击情况比较稳定.解(1)甲=1(8+8+6+8+6+5+9+10+7+4)=7.1, 10乙=2=s甲1(9+5+7+8+7+6+8+6+8+7)=7.1, 10[1**********][(8-7.1)+(8-7.1)+(6-7.1)+(8-7.1)+(6-7.1)+(5-7.1)+(9-7.1)+(10-7.1)+(7-7.1)+(4-7.1)]=3.09, 10∴s甲≈1.76.2=s乙[1**********][(9-7.1)+(5-7.1)+(7-7.1)+(8-7.1)+(7-7.1)+(6-7.1)+(8-7.1)+(6-7.1)+(8-7.1)+(7-7.1)]=1.29, 10∴s乙≈1.14.(2)∵甲=乙,s乙<s甲,∴乙射击情况比较稳定.4.(2019·海南、宁夏理,16)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271301 325乙品种:284315 329273 303 325 292 316 331280 303 328 295 318 333285 307 331 304 318 336285 308 334 306 320 337287 310 337 307 322 343292 314 352 312 322 356313 324315 327294 319295 323由以上数据设计了如下茎叶图:根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:① ;② .答案①乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度). ②甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).③甲品种棉花的纤维长度的中位数为307 mm,乙品种棉花的纤维长度的中位数为318 mm.④乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.一、填空题1.下列关于频率分布直方图的说法中不正确的是. ①直方图的高表示取某数的频率②直方图的高表示该组上的个体在样本中出现的频率③直方图的高表示该组上的个体数与组距的比值④直方图的高表示该组上的个体在样本中出现的频率与组距的比值答案①②③2.甲、乙两名新兵在同样条件下进行射击练习,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9.则这两人的射击成绩比稳定. 答案甲乙3.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用条形图表示如下:根据条形图可得这50名学生这一天平均每人的课外阅读时间为 h. 答案 0.94.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…… 第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图. 设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y 分别为 . 答案 0.9,355.(2019·启东质检)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力率分布直方图如图所示,由于不慎,部分数据丢失,但知道前四组的频数成等比数列,后六组数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为.情况,得到频的频数成等差答案 0.27,786.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x甲、x乙,则x甲 x乙,比稳定. 答案<乙甲7.(2019·上海理,9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 . 答案10.5、10.58.某教师出了一份共3道题的测试卷,每道题1分,全班得3分,2分,1分,0分的学生所占比例分别为30%,40%,20%,10%,若全班30人,则全班同学的平均分是分. 答案1.9 二、解答题9.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.且总体的中(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)解(1)各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.。
高三数学(文)统计与统计案例(课件)

30% 50% 下
若用分层抽样方法,则40
岁一下年龄段应抽取______人。 40~50岁
二、总体分布的估计
【例 2】甲乙两位学生参加数 学竞赛培训,现 从他们培训期间参加的 若干次预赛成绩中随机 抽 取 8次,记录如下: 甲: 82 81 79 78 95 88 93 84 乙: 92 95 80 75 83 80 90 85 (1)画出甲乙成绩的茎叶 图,指出学生乙成绩的
一、抽样方法及应用
例题1: (1)某单位200名职工的年龄分布情
况如图,现要从中抽取40名职工做样本,用系
统抽样法,将全体职工随机按1~200编号,并按
编号顺序平均分为40组(1~5号,6~10号,...,
196~200号),若第五组 50岁以上
40
抽出的号码为22,则第
20%
岁
以八组抽出的号码应Fra bibliotek______,
三、总体数字特征的估计
【例3】某车间10将 名技工平均分布两 为组 甲乙 加工某种零件,时 在间 单内 位每个技工件 加工 若干,其中合格个 零数 件如 的下表
(1) 分 别 求 出 甲 乙工两在组单技位 时 间 内 合 格 零 件 的 平 均差数,及并方由 此 分 析工两 的技术水 . 平
(2) 质 监 部 门 从 该乙车两间组甲中 各 随 机 抽 1名 技 工 , 对 其 加件工进的行零检 测 , 若成两 人 合 格 零 件 个 数 之1和 2个超,过则 称 该 车 间 “ 合 格 ” , 求 该 车量间合“格质” 的. 概 率
四、统计案例
【 例4】 在 调 查 的480名 男 人 中 有38名 患 有 色 盲 , 520名 女 人 中 有6名 患 有 色 盲 , 分 别 利图用形 和 独 立 性 检 验 的 方法 来 判色断盲 与 性 别 是否 有 关你? 所 得 到 的 结 论在 什 么围范内 有 效?
2022高中数学第1章统计案例2

第一章DIYIZHANG统计案例§2独立性检验2.1条件概率与独立事件课后篇巩固提升A组1.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=()A. B. C. D.(A)=,P(AB)=,由条件概率计算公式,得P(B|A)=.2.某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A为“第1次抽到选择题”,事件B为“第2次抽到选择题”,则下列结论中不正确的是()A.P(A)=B.P(AB)=C.P(B|A)=D.P(B|)=(A)=,故A正确;P(AB)=,故B正确;P(B|A)=,故C正确;P()=1-P(A)=1-,P(B)=,P(B|)=,故D错误.故选D.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45,则随后一天空气质量也优良的概率为p,则得0.6=0.75·p,解得p=0.8,故选A.4.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为,连续答对两道题的概率为.用事件A表示“甲同学答对第一道题”,事件B表示“甲同学答对第二道题”,则P(B|A)=()A. B. C. D.P(AB)=,P(A)=,∴P(B|A)=.故选D.5.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作.已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为()A.0.960B.0.864C.0.720D.0.576:由题意知K,A1,A2正常工作的概率分别为P(K)=0.9,P(A1)=0.8,P(A2)=0.8, ∵K,A1,A2相互独立,∴A1,A2至少有一个正常工作的概率为P(A2)+P(A1)+P(A1A2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96.∴系统正常工作的概率为P(K)[P(A2)+P(A1)+P(A1A2)]=0.9×0.96=0.864.方法二:A1,A2至少有一个正常工作的概率为1-P()=1-(1-0.8)(1-0.8)=0.96,∴系统正常工作的概率为P(K)[1-P()]=0.9×0.96=0.864.6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为..128,该选手的第二个问题必答错,第三、四个问题必答对,故该选手恰好回答了4个问题就晋级下一轮的概率P=1×0.2×0.8×0.8=0.128.7.已知随机事件A和B相互独立,若P(AB)=0.36,P()=0.6(表示事件A的对立事件),则P(B)=..9P(A)=1-P()=0.4,由独立事件的概率乘法公式可得P(AB)=P(A)P(B),因此,P(B)==0.9.8.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为.,则袋中还有9个球,其中5个新球,所以第二次取出新球的概率为.9.集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取,乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.1:将甲抽到数字a,乙抽到数字b,记作(a,b),则所有可能的抽取结果为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,5),( 4,6),(5,1),(5,2),(5,3),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),共30个.其中甲抽到奇数的情形有15个,在这15个中,乙抽到的数比甲抽到的数大的有9个,所求概率P=.解法2:设甲抽到奇数的事件为A,甲抽到奇数,且乙抽到的数比甲大为事件B,则P(A)=.P(AB)=,故P(B|A)=.10.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B,则“甲从第一小组的10张票中任抽1张,抽到排球票”为事件,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件,于是P(A)=,P()=;P(B)=,P()=.由于甲(或乙)是否抽到排球票,对乙(或甲)是否抽到足球票没有影响,因此A与B是相互独立事件.(1)两人都抽到足球票的概率为P=P(A)·P(B)=.(2)两人都抽到排球票的概率为P=P()·P()=.故两人至少有1人抽到足球票的概率为P=1-.B组1.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为()A.75%B.96%C.72%D.78.125%“任选一件产品是合格品”为事件A,则P(A)=1-P()=1-4%=96%.记“任选一件产品是一级品”为事件B.由于一级品必是合格品,所以事件A包含事件B,故P(AB)=P(B).由合格品中75%为一级品知P(B|A)=75%;故P(B)=P(AB)=P(A)·P(B|A)=96%×75%=72%.2.从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论不正确的是()A.2个球都是红球的概率为B.2个球不都是红球的概率为C.至少有1个红球的概率为D.2个球中恰有1个红球的概率为A选项,2个球都是红球的概率为,A选项正确;对于B选项,2个球不都是红球的概率为1-,B 选项错误;对于C选项,至少有1个红球的概率为1-,C选项正确;对于D选项,2个球中恰有1个红球的概率为,D选项正确.故选B.3.已知P(AB)=P(A)P(B),且P()=,P(A)=P(B),则事件A发生的概率是()A. B. C. D.P(AB)=P(A)P(B),知A与B相互独立,故A与与B,都是相互独立的,由P(A)=P(B),得P(A)P()=P(B)P(),即P(A)[1-P(B)]=P(B)[1-P(A)],得P(A)=P(B).∵P()=,∴P()=P()=,∴P(A)=.4.某农业科技站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9.在这批水稻种子中,随机地取出一粒,则这粒水稻种子发芽并能成长为幼苗的概率为() A.0.02 B.0.08 C.0.18 D.0.72“这粒水稻种子发芽”为事件A,“这粒水稻种子发芽并成长为幼苗”为事件AB,“这粒水稻种子在发芽的前提下能成长为幼苗”为事件B|A,则P(A)=0.8,P(B|A)=0.9,由条件概率公式,得P(AB)=P(B|A)·P(A)=0.9×0.8=0.72.5.市场上供应的灯泡中,甲厂占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则市场上灯泡的合格率是..5%A={甲厂产品},B={乙厂产品},C={合格产品},则C=AC+BC,所以P(C)=P(AC)+P(BC)=P(A)·P(C|A)+P(B)·P(C|B)=70%×95%+30%×80%=0.905=90.5%.6.设甲乘汽车、火车前往目的地的概率分别为0.6,0.4,汽车和火车正点到达目的地的概率分别为0.9,0.8,则甲正点到达目的地的概率为..86P=0.6×0.9=0.54,当甲乘火车时正点到达目的地的概率为P=0.4×0.8=0.32,所以甲正点到达目的地的概率为P=0.54+0.32=0.86.7.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第1次抽到A,则第2次也抽到A的概率为多少?1次抽到A为事件M,第2次也抽到A为事件N,则MN表示两次都抽到A, P(M)=,P(MN)=,P(N|M)=.8.制造一机器零件,甲机床生产的废品率是0.04,乙机床生产的废品率是0.05,从它们生产的产品中各任取1件,求:(1)两件都是废品的概率;(2)其中没有废品的概率;(3)其中恰有1件废品的概率;(4)其中至少有1件废品的概率;(5)其中至多有1件废品的概率.“从甲机床生产的产品中抽得1件是废品”为事件A,“从乙机床生产的产品中抽得1件是废品”为事件B.则P(A)=0.04,P(B)=0.05.(1)P(AB)=P(A)P(B)=0.04×0.05=0.002.(2)P()=P()P()=0.96×0.95=0.912.(3)P(B+A)=P()P(B)+P(A)P()=0.96×0.05+0.04×0.95=0.086.(4)至少有一件是废品的对应事件为B+A+AB,易知B,A,AB是彼此互斥的三件事件.故所求概率为P=P(B+A+AB)=P(B+A)+P(AB)=0.086+0.002=0.088.(利用(1),(3)小题的结果)或考虑其对应事件“没有废品”,故P=1-P()=1-0.912=0.088.(5)“至多有一件是废品”即为事件B+A;其对立事件为“两件都是废品”:AB.故所求概率P=P(B+A)=1-P(AB)=1-0.002=0.998.。
高三数学一轮复习讲义统计案例学生
课题:统计案例知识点一、统计案例1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.2.列联表列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为2×2列联表y1y2总计x1a b a+bx2c d c+d总计a+c b+d a+b+c+d构造一个随机变量22Kn ad bca b c d a c b d-=++++()()()()(),其中n=a+b+c+d为样本容量.3.独立性检验利用随机变量2K来判断“两个分类变量有关系”的方法称为独立性检验.4.独立性检验的步骤(1)计算随机变量2K的观测值k,查表确定临界值k0:P(2K≥k0)k0 0.455P(2K≥k0)k0(2)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过P(2K≥k0);否则,就认为在犯错误的概率不超过P(2K≥k0)的前提下不能推断“X与Y有关系”.5.独立性检验的方法(1)独立性检验的步骤:①根据样本数据制成2×2列联表;②根据公式22Kn ad bca b c d a c b d-=++++()()()()(),计算2K的观测值;③比较2K与临界值的大小关系作统计推断.(2)独立性检验得出的结论带有概率性质,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值,和就是两个常用的临界值,一般认为当2K时,则有95%的把握说事件A与B有关;当2K时,则有99%的把握说事件A与B有关.【典型例题】【例1】通过随机询问110名性别不同的大学生是否爱好某项运动,得到列联表:男女总计爱好40 20 60不爱好20 30 50总计60 50 110由22Kn ad bca b c d a c b d-=++++()()()()(),计算得2211040302020K7.860506050⨯⨯-⨯=≈⨯⨯⨯()附表:P(K2≥k0)k0参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【例2】某班学生数学、外语成绩得到2×2列联表如:数优数差总计外优34 17 51外差15 19 34总计49 36 85χ等于________.那么,随机变量2【例3】某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列2×2列联表:主食蔬菜主食肉类合计50岁以下50岁以上合计(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.【举一反三】1.随着的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.年龄(单位:岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数 5 10 15 10 5 5赞成人数 5 10 12 7 2 12⨯列联表,并判断是否有99%的把握认为“使(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2用微信交流”的态度与人的年龄有关;合年龄不低于45岁的人数年龄低于45岁的人数计赞成不赞成合计(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.参考数据如下:2.假设某地有男驾驶员300名,女驾驶员200名.为了研究驾驶员日平均开车速度是否与性别有关,现采用分层抽样的方法,从中抽取了100名驾驶员,先统计了他们某月的日平均开车速度,然后按“男驾驶员”和“女驾驶员”分为两组,再将两组驾驶员的日平均开车速度(千米/小时)分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均开车速度不足60(千米/小时)的驾驶员中随机抽取2人,求至少抽到一名“女驾驶员”的概率.(2)如果一般认为日平均开车速度不少于80(千米/小时)者为“危险驾驶”.请你根据已知条件完成2×2联表,并判断是否有90%的把握认为“危险驾驶与驾驶员性别组有关”?附:22()()()()()n ad bc K a b c d a c b d -=++++【课堂巩固】1. 某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下22⨯列联表:则可以说其亲属的饮食习惯与年龄有关的把握为( ) A .90% B .95% C .99% D .99.9% 附:参考公式和临界值表22()()()()()n ad bc K a b c d a c b d -=++++2.下面是2×2列联表:则表中a ,b 的值分别为( ) A .94,72 B .52,50 C .52,74 D .74,523.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算χ2≈0.99,根据这一数据分析,下列说法正确的是( )A .有99%的人认为该电视栏目优秀B .有99%的人认为该电视栏目是否优秀与改革有关系C .有99%的把握认为该电视栏目是否优秀与改革有关系D .没有理由认为该电视栏目是否优秀与改革有关系4.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂:频数12 63 86 182 92 61 4乙厂:分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数297185159766218(1)试分别估计两个分厂生产零件的优质品率;(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.附 22K n ad bc a b c d a c b d -=++++()()()()(),P (K 2≥k ) k5.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附: 22K n ad bc a b c d a c b d -=++++()()()()()P(χ2≥k)0.010 k6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球不喜爱打篮球合计 男生 5 女生 10 合计50已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为35.(1)请将上表补充完整(不用写计算过程);(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:甲 厂 乙 厂 合 计 优质品 非优质品 合 计(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)【课后练习】正确率:1.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘”能做到“光盘”男 45 10 女 3015附:P (K 2≥k ) 0.10 0.05 0.025k2.706 3.841 5.024参照附表,得到的正确结论是( )A .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”2.在独立性检验中,统计量2χ有两个临界值:3.841和6.635.当2 3.841χ>时,有95%的把握说明两个事件有关,当2 6.635χ>时,有99%的把握说明两个事件有关,当2 3.841χ≤时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算220.87χ=.根据这一数据分析,认为打鼾与患心脏病之间( )A.有95%的把握认为两者有关B.约有95%的打鼾者患心脏病C.有99%的把握认为两者有关D.约有99%的打鼾者患心脏病3.为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下: 女生:睡眠时间(小时) [)4,5[)5,6[)6,7 [)7,8 []8,9人数24842男生:(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;(2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)4.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)(2)由以上统计数据填下面2×2列联表,问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?附。
高三数学统计案例试题答案及解析
高三数学统计案例试题答案及解析1.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()D.阅读量【答案】D【解析】根据公式分别计算得:A., B. C. D. ,选项D的值最大,所以与性别有关联的可能性最大为D.【考点】关联判断2.某种产品的广告费支出z与销售额y(单位:万元)之间有如下对应数据:若广告费支出z与销售额y回归直线方程为多一6.5z+n(n∈R).(1)试预测当广告费支出为12万元时,销售额是多少?(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.【答案】(1);(2).【解析】(1)回归方程必过样本中心点,,将样本中心点代入回归方程,求出,即得回归方程,当广告费支出万元时,代入求得就是销售额;(2)将实际值与观测值对应列出,列举法一一列出任取两组的所有基本事件,至少有一组数据其预测值与实际值之差的绝对值不超过的对立事件为,两组都超过,找到两组都超过的基本事件的个数,.(1)因为点(5,50)在回归直线上,代入回归直线方程求得,所求回归直线方程为: 3分当广告支出为12时,销售额. 5分(2)实际值和预测值对应表为在已有的五组数据中任意抽取两组的基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个, 10分两组数据其预测值与实际值之差的绝对值都超过5的有(60,50),所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为. 12分【考点】1.回归方程;2.古典概型的概率问题.3.一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表是抽样试验结果:在的范围是()A.10转/s以下B.15转/s以下C.20转/s以下D.25转/s以下【答案】B【解析】则a=-b=-0.857 5.∴回归直线方程为=0.728 6x-0.857 5.要使y≤10,则0.728 6x-0.857 5≤10,∴x≤14.901 9.因此,机器的转速应该控制在15转/s以下.故选B.4.登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x(°C)181310-1由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.-10B.-8C.-6D.-6【答案】C【解析】由题意可得=10,=40.5,所以=+2=40.5+2×10=60.5,所以,当=72时,,解得x≈-6,故选C.【考点】回归分析5.在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。
高中高三数学《基本统计方法》优秀教学案例
4.引导学生关注社会现象,关心国家大事,运用所学的统计知识为社会发展和国家建设贡献自己的力量。
三、教学策略
(一)情景创设
在本章节的教学中,我将采用贴近生活的情景创设策略,将学生引入到真实的问题场景中,激发他们的学习兴趣和探究欲望。通过设计具有现实意义的数据分析问题,如学校食堂的菜品满意度调查、班级学生的身高体重分布等,让学生在解决问题的过程中感受统计方法的应用价值。同时,结合多媒体手段,展示与统计相关的图表、案例等,增强学生对统计知识的直观认识,提高他们的学习积极性。
2.问题导向,培养数据分析能力
本案例以问题为导向,设计了一系列具有挑战性和启发性的问题,引导学生主动探究、积极思考。通过解决问题,学生不仅掌握了基本统计方法,还培养了数据分析能力,为解决实际生活中的问题奠定了基础。
3.小组合作学习,提升团队协作能力
在教学过程中,本案例注重小组合作学习,让学生在互动交流中互补优势,共同进步。小组合作不仅提高了学生的团队协作能力,还培养了他们的沟通能力、批判性思维等综合素质。
4.能够运用所学的基本统计方法对实际问题进行分析,提出合理的解决方案,形成数据分析报告。
(二)过程与方法
1.培养学生独立思考、合作交流的能力,通过小组讨论、案例分析等形式,提高他们分析问题和解决问题的能力。
2.引导学生通过观察、实验、模拟等手段收集数据,培养他们运用数学方法处理实际问题的能力。
3.培养学生运用信息技术手段,如Excel、统计软件等,进行数据整理、分析和呈现的能力。
(五)作业小结
为了巩固所学知识,我会布置以下作业:
1.根据所学统计量,分析一个实际问题,并撰写数据分析报告。
高中数学知识点之统计及统计案例分析
统计概率新泰一中 闫辉例1 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高? 解 (1)依题意知第三组的频率为1464324+++++=51,又因为第三组的频数为12, ∴本次活动的参评作品数为5112=60.(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×1464326+++++=18(件).(3)第四组的获奖率是1810=95,第六组上交的作品数量为 60×1464321+++++=3(件),∴第六组的获奖率为32=96,显然第六组的获奖率高.例2(14分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min 抽取一包产品,称其重量,分别 记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98, 99; 乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定. 解 (1)因为间隔时间相同,故是系统抽样.2分(2)茎叶图如下:5分(3)甲车间: 平均值:1x =71(102+101+99+98+103+98+99)=100,7分 方差:s 12=71[(102-100)2+(101-100)2+…+(99-100)2]≈3.428 6.9分乙车间:平均值:2x =71(110+115+90+85+75+115+110)=100,11分 方差:s 22=71[(110-100)2+(115-100)2+…+(110-100)2]≈228.571 4.13分 ∵1x =2x ,s 12<s 22,∴甲车间产品稳定.14分1.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?解 (1)第四小组的频率=1-(0.1+0.3+0.4)=0.2. (2)设参加这次测试的学生人数是n , 则有n =第一小组频率第一小组频数=5÷0.1=50(人).(3)因为0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,即第一、第二、第三、第四小组的频数分别为5、15、20、10,所以学生跳绳次数的中位数落在第三小组内.2.从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下:(单位:分) [40,50),2;[50,60),3;[60,70),10;[70,80),15; [80,90),12;[90,100],8. (1)列出样本的频率分布表; (2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例; (4)估计成绩在85分以下的学生比例.解 (1)频率分布表如下:(2)频率分布直方图如图所示.(3)成绩在[60,90)的学生比例即为学生成绩在[60,90)的频率,即为(0.20+0.30+0.24)×100%=74%. (4)成绩在85分以下的学生比例即为学生成绩不足85分的频率. 设相应的频率为b . 由808560.0--b =809060.084.0--,故b =0.72.估计成绩在85分以下的学生约占72%.一、填空题1.下列关于频率分布直方图的说法中不正确的是 . ①直方图的高表示取某数的频率②直方图的高表示该组上的个体在样本中出现的频率 ③直方图的高表示该组上的个体数与组距的比值④直方图的高表示该组上的个体在样本中出现的频率与组距的比值 答案 ①②③2.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…… 第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图. 设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学 生人数为y ,则从频率分布直方图中可分析出x 和y 分别为 . 答案 0.9,353.(2009·启东质检)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎,部分数据丢失,但知道前四组的频数成等比数列,后六组的频数成等差数列,设最大频率为a ,视 力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为 .答案 0.27,784.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x 甲、x 乙,则x 甲 x 乙, 比 稳定. 答案 < 乙 甲 二、解答题5.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图; (2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)解 (1)各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05. ∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40. ∴落在59.5~69.5的第二小组的小长方形的高=组距频率=1040.0=0.04.则补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x 人. ∵第二小组的频数为40人,频率为0.40, ∴x40=0.40,解得x =100(人).所以九年级两个班参赛的学生人数为100人.(3)因为0.3×100=30,0.4×100=40,0.15×100=15,0.10×100=10,0.05×100=5,即第一、第二、第三、第四、第五小组的频数分别为30,40,15,10,5,所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.6.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由. 解 (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:391517424+++++=0.08.又因为频率=样本容量第二小组频数,所以样本容量=第二小组频率第二小组频数=08.012=150.(2)由图可估计该学校高一学生的达标率约为39151742391517++++++++×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.7.某赛季甲、乙两名篮球运动员每场比赛得分情况如下:甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50; 乙的得分:8,13,14,16,23,26,28,33,38,39,59. (1)制作茎叶图,并对两名运动员的成绩进行比较;(2)计算上述两组数据的平均数和方差,并比较两名运动员的成绩和稳定性; (3)能否说明甲的成绩一定比乙好,为什么? 解 (1)制作茎叶图如下:从茎叶图上可看出,甲运动员发挥比较稳定,总体得分情况比乙好.(2)x 甲=33,2甲s ≈127.23,x 乙=27,2乙s ≈199.09,∴x 甲>x 乙, 2甲s <2乙s ,∴甲运动员总体水平比乙好,发挥比乙稳定.(3)不能说甲的水平一定比乙好,因为上述是甲、乙某赛季的得分情况,用样本估计总体也有一定的偶然性,并不能说一定准确反映总体情况.线性回归方程1.为了考察两个变量x 、y 之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l 1和l2.已知在两人的试验中发现变量x 的观测数据的平均值恰好相等,都为s ,变量y 的观测数据的平均值也恰好相等,都为t ,那么下列说法中正确的是 (填序号). ①直线l 1,l 2有交点(s ,t )②直线l 1,l 2相交,但是交点未必是(s ,t ) ③直线l 1,l 2由于斜率相等,所以必定平行 ④直线l 1,l 2必定重合 答案 ① 2.下列有关线性回归的说法,正确的是 (填序号). ①相关关系的两个变量不一定是因果关系 ②散点图能直观地反映数据的相关程度③回归直线最能代表线性相关的两个变量之间的关系 ④任一组数据都有回归直线方程 答案 ①②③ 3.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=b ˆx +a ˆ及回归系数b ˆ,可以估计和预测变量的取值和变化趋势. 其中正确命题的序号是 . 答案 ①②③4.已知回归方程为yˆ=0.50x -0.81,则x =25时,y ˆ的估计值为 . 答案 11.691.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程yˆ=b ˆx +a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?基础自测(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)散点图如下图:(2)x =46543+++=4.5,y=45.4435.2+++=3.5∑=41i iiy x=3×2.5+4×3+4×5+6×4.5=66.5.∑=412i ix=32+42+52+62=86∴bˆ=24124144xx yx y xi i i i i-∙-∑∑===25.44865.45.345.66⨯-⨯⨯-=0.7aˆ =y -bˆx =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为yˆ=0.7x +0.35. (3)现在生产100吨甲产品用煤 y =0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨)标准煤.2.某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元?解 (1)n =6,∑=61i ix=21,∑=61i iy=426,x =3.5,y=71,∑=612i ix =79,∑=61i ii yx =1 481,bˆ=26126166xxyx y xi ii i i-∙-∑∑===25.3679715.364811⨯-⨯⨯-=-1.82.aˆ=y-bˆx =71+1.82×3.5=77.37. 回归方程为yˆ=a ˆ+b ˆx =77.37-1.82x . (2)因为单位成本平均变动bˆ=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有: 产量每增加一个单位即1 000件时,单位成本平均减少1.82元. (3)当产量为6 000件时,即x =6,代入回归方程:yˆ=77.37-1.82×6=66.45(元) 当产量为6 000件时,单位成本为66.45元.1.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为yˆ=8.25x +60.13,下列叙述正确的是 .①该地区一个10岁儿童的身高为142.63 cm ②该地区2~9岁的儿童每年身高约增加8.25 cm ③该地区9岁儿童的平均身高是134.38 cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 ②2.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程yˆ=b ˆx +a ˆ表示的直线一定过定点 . 答案 (4,5)统计案例例1 (14分)调查339名50岁以上人的吸烟习惯与患慢性气管炎的情况,获数据如下:试问:(1)吸烟习惯与患慢性气管炎是否有关? (2)用假设检验的思想给予证明. (1)解 根据列联表的数据,得到χ2=))()()(()(2c d b d c a b a bc ad n ++++- 2分=13428356205)1316212143(3392⨯⨯⨯⨯-⨯⨯=7.469>6.635 6分 所以有99%的把握认为“吸烟与患慢性气管炎有关”.9分(2)证明 假设“吸烟与患慢性气管炎之间没有关系”,由于事件A ={χ2≥6.635}≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.14分1.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.解 (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P 1=5024=2512,又因为不太主动 参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=5019.(2)由2χ统计量的计算公式得2χ=25252624)761918(502⨯⨯⨯⨯-⨯⨯≈11.538,由于11.538>10.828,所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.2.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:检验每册书的成本费y 与印刷册数的倒数x1之间是否具有线性相关关系,如有,求出y 对x 的回归方程.解 首先作变量置换,令u =x1,题目所给数据变成如下表所示的10对数据:然后作相关性检验.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系.由公式得aˆ≈1.125,b ˆ≈8.973, 所以yˆ=1.125+8.973u , 最后回代u =x1,可得y ˆ=1.125+x973.8,这就是题目要求的y 对x 的回归曲线方程.回归曲线的图形如图所示,它是经过平移的反比例函数图象的一个分支.1.工人月工资y (元)依劳动生产率x (千元)变化的回归方程为yˆ=50+80x ,下列判断正确的是 . ①劳动生产率为1 000元时,工资为130元 ②劳动生产率提高1 000元时,工资平均提高80元 ③劳动生产率提高1 000元时,工资平均提高130元 ④当月工资为210元时,劳动生产率为2 000元 答案 ②2.下面是2×2列联表:则表中a ,b 的值分别为 . 答案 52,743.在一次对性别与说谎是否有关的调查中,得到如下数据:根据表中数据,得到如下结论中不正确的是 . ①在此次调查中有95%的把握认为是否说谎与性别有关 ②在此次调查中有99%的把握认为是否说谎与性别有关 ③在此次调查中有99.5%的把握认为是否说谎与性别有关 ④在此次调查中没有充分的证据显示说谎与性别有关 答案 ①②③ 答案 5%4.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠,在照射后14天的结果如下表所示:进行统计分析时的统计假设是: . 答案 小白鼠的死亡与剂量无关 二、解答题5.在一次飞机航程中调查男女乘客的晕机情况,其二维条形图如图: (1)写出2×2列联表; (2)判断晕机与性别是否有关? 解 (1)(2)2χ=80309020)10702010(1102⨯⨯⨯⨯-⨯⨯≈6.366>5.024,故有97.5%的把握认为“晕机与性别有关”.6.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效?解 根据题目所给的数据作出如下的列联表:根据列联表作出相应的二维条形图:从二维条形图来看,在男人中患色盲的比例为48038,要比女人中患色盲的比例5206大.其差值为520648038-≈0.068,差值较大.因而,我们可以认为“患色盲与性别是有关的”. 根据列联表所给的数据可以有a =38,b =442,c =6,d =514,a +b =480,c +d =520, a +c =44,b +d =956,n =1 000, 由2χ=))()()(()(2d b c a d c b a bc ad n ++++-=95644520480)442651438(00012⨯⨯⨯⨯-⨯⨯≈27.1.由27.1>10.828,所以我们有99.9%的把握认为患色盲与性别有关系,这个结论只对所调查的480名男人和520名女人有效.7.(16分)从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm ) 甲:25 41 40 37 22 14 19 39 21 42 乙:27 1644 27 44 16 40 40 16 40问:(1)哪种玉米的苗长得高? (2)哪种玉米的苗长得齐? 解 (1)x 甲=101(25+41+40+37+22+14+19+39+21+42)=101×300=30 (cm ),x乙=101(27+16+44+27+44+16+40+40+16+40)=101×310=31(cm).∴x 甲<x 乙,即乙种玉米的苗长得高.(2)2甲s =101[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=101 (25+121+100+49+64+256+121+81+81+144)=101×1 042=104.2 (cm 2),2乙s =101[(27-31)2×2+(16-31)2×3+(44-31)2×2+(40-31)2×3]=101×1 288=128.8 (cm 2).∴2甲s <2乙s .即乙种玉米的苗长得高,甲种玉米的苗长得整齐.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 统计、统计案例10.3统计案例【高考目标导航】一、考纲点击1.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;2.了解回归分析的基本思想、方法及其简单应用. 二、热点提示1.本部分主要内容是变量的相关性及其几种常见的统计方法.在高考中主要是以考查独立性检验、回归分析为主,并借助解决一些简单的实际问题来了解一些基本的统计思想;2.本部分在高考中多为选择、填空题,也有可能出现解答题,都为中低档题.【考纲知识梳理】1.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法;(2)随机误差:线性回归模型用y bx a e =++表示,其中a b 和为模型的未知数,e 称为随机误差. (3)样本点的中心在具有线性相关关系的数据1122(,),(,),,(,)n n x y x y x y 中,回归方程的截距和斜率的最小二乘估计公式分别为:121()()ˆˆˆˆ,.()nii i nii xx y y bay b x xx ==--==--∑∑ 其中1111,,(,)nnii i i x x y y x y nn ====∑∑称为样本点的中心.(4)相关系数①()()nii xx y y r --=∑②当0r >时,表明两个变量正相关; 当0r <时,表明两个变量负相关.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常||r 大于0.75时,认为两个变量有很强的线性相关性.2.残差分析 (1)总偏差平方和把每个效应(观测值减去总的平均值)的平方加起来即:21()ni i y y =-∑(2)残差数据点和它回归直线上相应位置的差异 ()i i y y -是随机误差的效应,称 i ii e y y =-为残差. (3)残差平方和 21()ni i i y y =-∑.(4)相关指数 22121()()nii i n ii yy R yy ==-=-∑∑2R 的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中, 2R 表示解释变量对预报变量变化的贡献率, 2R 越接近于1,表示回归的效果越好.3.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y,它们的可能取值分别为1122{,}{,}x y x y 和,其样本频数列联表(称为2×2列联表)为2×2列联表构造一个随机变量22()()()()()n ad bc K a b c d a c b d -=++++,其中a b c d +++为样本容量.(3)独立性检验利用随机变量2K来确定是否能以一定把握认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.注: 在独立性检验中经常由2K,kK与k的关系并不是k=2K得到观测值k,则k=2K是否成立?(2是2K是一个随机变量,它在a,b,c,d)取不同值时,2K可能不同,而k是K的观测值,或者说2取定一组数a,b,c,d后的一个确定的值.【要点名师透析】(一)线性回归分析※相关链接※1.首先利用散点图判断两个变量是否线性相关..2.求回归方程y bx a=+(1)线性回归方程中的截距 a和斜率b 都是通过样本估计而来的,存在着误差,这种误差可能导致预报结果的偏差.中的b 表示x增加1个单位时 y的变化量为b .(2)回归方程=+y bx a预报在x取某一个值时y的估计值.(3)可以利用回归方程=+y bx a3.相关系数r利用相关系数r来衡量两个变量之间的线性相关的强弱.4.建立回归模型的步骤(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量.(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等).).(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程=+y bx a(4)按一定规则估计回归方程中的参数(如最小二乘法).(5)得出结果后分析残差是否异常(个别数据对应残差过大,或残差呈现不随机的规律性等).若存在异常,则检查数据是否有误,或模型是否适合等.注:回归方程只适用于我们所研究的样本的总体,而且一般都有时间性.样本的取值范围一般不能超过回归方程的适用范围,否则没有实用价值.※例题解析※〖例〗测得某国10对父子身高(单位:英寸)如下:(1)对变量y x 与进行相关性检验;(2)如果y x 与之间具有线性相关关系,求回归方程. (3)如果父亲的身高为73英寸,估计儿子的身高.思路解析:(1)先根据已知计算相关系数r ,判断是否具有相关关系. (2)再利用分工求出回归方程进行回归分析. 解答:(1)10101022221111066.8,67.01,4462.24,4490.4,44974,44941.93,44842.4,10iii i i i i iix y x y x y x y x yx yr ======≈===-==∑∑∑∑0.804.≈所以y x 与之间具有很强的线性相关关系.(2)设回归方程为 y bxa =+ .由101102211044842.444762.6879.72ˆ0.46464479444662.4171.610iii ii x yx yb xx==--===≈--∑∑.ˆˆ67.010.464666.835.97.ay bx =-=-⨯≈ 故所求的回归方程为:ˆ0.464635.97yx =+. (3)当x=73时, ˆ0.46467335.9769.9y=⨯+≈.所以当父亲身高为73英寸时,估计儿子身高约为69.9英寸.(二)非线性回归分析 ※相关链接※1.非线性回归模型:当回归方程不是形如y bx a =+时称之为非线性回归模型.2.非线性回归模型的拟合效果:对于给定的样本点1122(,),(,),,(,)n n x y x y x y ,两个含有未知数的模型(1)(2)(,)(,)yf x a yg x b == 和,其中a b 和都是未知参数.可按如下的步骤比较它们的拟合效果:(1)分别建立对应于两个模型的回归方程(1)(2)ˆˆˆˆ(,)(,)yf x a yg x b ==和,其中ˆˆa b 和分别是参数a b 和的估计值;(2)分别计算两个回归方程的残差平方和(1)(1)2(2)(2)211ˆˆˆˆ()()nnii ii i i QyyQyy===-=-∑∑和; (3)若(1)ˆQ<(2)ˆQ ,则(1)(2)ˆˆˆˆ(,)(,)y f x a y g x b ==的效果比; 反之, (1)(2)ˆˆˆˆ(,)(,)yf x a yg x b ==的效果不如的好. ※例题解析※〖例〗为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下:(1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算残差平方和、相关指数.思路解析:作出散点图→分析与哪种曲线拟合→转化线性关系→进行回归分析. 解答:(1)所作散点图如图所示.(2)由散点图看出样本点分析在一条指数函数21c xy c e=的周围,于是令ln z y =,则由计算器得:ˆ0.69 1.112,zx =+则有 1.69 1.112ˆx y e +=.(3)则662211ˆˆ() 3.1643i i ii ie y y===-=∑∑,621ˆ()i iiy y=-∑=24642.8,2 3.164310.999924642.8R=-=,即解释变量天数对预报变量细菌的繁殖个数解释了99.99%.(三)独立性检验〖例〗在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效?思路解析:(1)先由已知作出调查数据的列联表;(2)再根据列联表画出二维条形图,并进行分析;(3)利用独立性检验作出判断.解答:根据题目所给的数据作出如下的联表:根据列联表作出相应的二维条形图,如图所示.从二维条形图来看,在男人中患色盲的比例38480,要比在女人中患色盲的比例6520要大,其差值为386||0.068,480520-≈差值较大,因而我们可以认为“性别与患色盲是有关的”,根据列联表中所给的数据可以有38,442,6,514,480,520,44,956,1000,a b c d a b c d a c b d n====+=+=+=+==代入公式22()()()()()n ad bcKa b c d a c b d-=++++得221000(385146442)27.148052044956K⨯⨯-⨯=≈⨯⨯⨯。
由于2K =27.1>10.828,所以我们有99.9%的把握认为性别与患色盲有关系.这个结论只对所调查的480名男人和520名女人有效.注:利用图形来判断两个变量之间是否有关系,可以结合所求的数值来进行比较.作图应注意单位统一、图形准确,但它不能给出我们两个分类变量有关或无关的精确的可信程度,若要作出精确的判断,可以作独立性检验的有关计算.【感悟高考真题】1. (2011·山东高考理科·T7)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A )63.6万元 (B )65.5万元 (C )67.7万元 (D )72.0万元【思路点拨】本题可先利用公式求出回归直线方程,再预报广告费用为6万元时销售额. 【精讲精析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7ˆ429.42a=⨯+, 解得 9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 2. (2011·山东高考文科·T8)某产品的广告费用x 万元与销售额y 万元的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( )(A )63.6万元 (B )65.5万元 (C )67.7万元 (D )72.0万元【思路点拨】本题可先利用公式求出回归直线方程,再预报广告费用为6万元时销售额. 【精讲精析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7ˆ429.42a=⨯+, 解得 9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,故选B.3. (2010安徽文数)18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。