八年级上数学第二章分式(题+答案)
鲁教版2018八年级数学上册第二章分式与分式方程单元练习题一(附答案详解

鲁教版2018八年级数学上册第二章分式与分式方程单元练习题一(附答案详解1.在2x , 3m , 5x y +, m n π-, 2b a b +, 25x-53y 中,分式有( ) A . 2 B . 3 C . 4 D . 52.有下列各式(1(23=, 其中一定成立的有( )A . 0个B . 1个C . 2个D . 3个3.有一类分数,每个分数的分子与分母的和是100.如果分子减,分母加,得到新的分数约分后等于(其中是正整数),那么该类分数中分数值最小的是( )A .B .C .D . 4.下列计算结果正确的有( ) ①23x x •3x x =1x ;②8a 2b 2•(﹣234a b )=﹣6a 3;③21a a -÷22a a a +=11a -; ④a÷b•=a . A . 1个 B . 2个 C . 3个 D . 4个 5.在代数式2x x 、211331,,,,22x xy a x y mπ+++中,分式的个数有( ) A . 2个 B . 3个 C . 4个 D . 5个6.若分式的值为0,则x 的值为A . 1B .C .D . 0 7.下列代数式中,属于分式的是( )A . -3B .12 a -b C . 1xD . -4a 3b 8.若分式的值为0,则x 的值为( ) A . -1 B . 0 C . 2 D . -1或29.使代数式有意义的自变量x 的取值范围是( )A . x≥3B . x >3且x≠4C . x≥3且x≠4D . x >310.代数式的家中来了几位客人: 2x , 3x y +, 12a -, 21x π+, 3x b -, 2y y +,其中属于分式家族成员的有( )A . 1个B . 2个C . 3个D . 4个11.计算:(﹣π)0+2-2=________.12.化简: 239m m -- = __________。
人教版八年级数学上册分式方程(含答案)

15.3分式方程专题一 解分式方程 1.方程32x 31-x 1+=的解是 . 2.解分式方程:3x 911x 3x 32-=-+.3.解分式方程:32x ++1x =242x x+.专题二 分式方程无解4.关于x 的分式方程211x m x x -=--无解,则m 的值是( )A .1B .0C .2D .–25.若关于x 的方程2222x m x x ++=--无解,则m 的值是______. 6.若关于x 的分式方程2233x m x x -=--无解,则m 的值为__________. 专题三 列分式方程解应用题7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )A .60702x x=+ B .60702x x =+C.60702x x =- D.60702x x =-8.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前4天完成任务.原计划每天种多少棵树?39.某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.状元笔记【知识要点】1.分式方程分母中含未知数的方程叫做分式方程.2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.参考答案:1.x=6 解析:去分母,得2x+3=3(x-1),解得x=6,经检验x=6是原方程的解.所以,原分式方程无解.3.解:方程两边乘x(x+2),得3x+x+2=4,解得x=21.经检验:x=21是原方程的解.4.A 解析:方程两边成x -1,得x -2(x -1)=m ,解得x=2-m .∵当x=1时分母为0,方程无解,∴2-m=1,即m=1时,方程无解.故选A .7.B 解析:设甲班每天植树x 棵,则乙班每天植树(x+2)棵,甲班植60棵树所用的天数为x ,乙班植70棵树所用的天数270+x ,可列方程为x 60=270+x .故选B . 8.解:设原计划每天种x 棵树,实际每天种树113x ⎛⎫+⎪⎝⎭棵,根据题意,得 4804804113x x -=⎛⎫+ ⎪⎝⎭.解这个方程,得x=30.经检验x=30是原方程的解且符合题意.答:原计划每天种树30棵.9.解:不能相同.理由如下:设该校购买的乒乓球拍每副x 元,羽毛球拍每副(x +14)元,若购买的乒乓球拍与羽毛球拍的数量相同,则1428002000+=x x ,解得x =35.经检验x =35是原方程的解.但当x =35时,74001428002000=+=x x ,不是整数,不合题意. 所以购买的乒乓球拍与羽毛球拍的数量不能相同.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)

人教版八年级上册第2课时列分式方程解决实际问题(348)1.某公司在工程招标时,接到甲、乙两个工程队的投标书.甲工程队每施工一天,需付工程款1.5万元,乙工程队每施工一天,需付工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需多少天;(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得选哪一种施工方案划算?请说明理由.2.某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书知,甲队单独完成这项工程所需天数是乙队单独.若由甲队先做20天,剩下的工程再由甲、乙两队完成这项工程所需天数的23合作60天可完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?3.小明准备利用暑假从距上海2160千米的某地去“上海迪斯尼乐园”参观游览,如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.4.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.5.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)6.“郁郁林间桑葚紫,茫茫水面稻苗青”说的就是味甜汁多,酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150千克,到了第三天,他发现剩余的桑葚卖相已不太好,于是果断地以低于进价20%的价格将剩余的全部售出,小李一共获利750元,设小李共购进桑葚x千克.(1)根据题意完成下表:(用含x的式子表示)(2)求小李共购进多少千克的桑葚.7.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.8.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙两工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A.6B.7C.8D.99.哈尔滨市政府欲将一块地建成湿地公园,动用了一台甲型挖土机,4天挖完了这块地的13,后又加一台乙型挖土机,两台挖土机同时工作,结果又用两天就挖完了整片地,那么乙型挖土机单独挖完这块地需要天.10.园林部门计划在一定时间内完成植树任务,甲队独做正好按期完成,乙队独做则要误期3天.现两队合作2天后,余下任务由乙队独做,正好按期完成任务.则原计划多少天完成植树任务?11.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x −180(1+50%)x=1 B.180(1+50%)x−180x=1C.180x −180(1−50%)x=1 D.180(1−50%)x−180x=112.某村电路发生断电,该地供电局组织电工进行抢修.供电局距离该村15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达.已知吉普车速度是抢修车速度的1.5倍,则抢修车的速度是13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.400x =300x−30B.400x−30=300xC.400x+30=300xD.400x=300x+3014.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.参考答案1(1)【答案】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得4x +4x+5+x−4x+5=1,解得x=20.经检验,x=20是原分式方程的解且符合题意.x+5=25.答:甲队单独完成此项工程需20天,乙队单独完成此项工程需25天.(2)【答案】解:选方案③划算.理由如下:这三种施工方案需要的工程款:方案①:1.5×20=30(万元);方案②:1.1×(20+5)+5×0.3=29(万元);方案③:1.5×4+1.1×20=28(万元).∵30>29>28,∴方案③最节省工程款.2(1)【答案】解:设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得2023x+60(123x+1x)=1,解得x=180.经检验,x=180是原分式方程的解且符合题意.2 3x=23×180=120.答:甲、乙两队单独完成这项工程分别需120天和180天. (2)【答案】解:设甲、乙两队合作完成这项工程需要y天.则y(1120+1180)=1,解得y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000,∴预算的施工费用不够用,需追加预算152万元.3.【答案】:解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得2160x=2160x+6×1.6,解得x =10.经检验,x =10是原方程的根且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.4.【答案】:解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 依题意得1200x−12001.5x=10,解得x =40.经检验,x =40是原方程的根,且符合题意.1.5x =60.答:甲工厂每天加工40件新产品,乙工厂每天加工60件新产品.5.【答案】:解:设例子中的A 4厚型纸每页的质量为x 克. 由题意,得400x=2×160x−0.8,解得x =4.经检验,x =4为原方程的解,且符合题意. 答:例子中的A 4厚型纸每页的质量为4克. 6(1)【答案】3000(1+40%)x;3000(1−20%)x;x −150(2)【答案】解:根据题意,得150·3000(1+40%)x+(x −150)·3000(1−20%)x−3000=750解得x =200.经检验,x =200是原方程的解且符合题意. 答:小李共购进200千克桑葚. 7(1)【答案】解:设每本软面笔记本花费x元,则每本硬面笔记本花费(x+1.2)元.由题意,得12 x =21x+1.2,解得x=1.6.此时121.6=211.6+1.2=7.5(不符合题意),所以小明和小丽不能买到相同数量的笔记本.(2)【答案】解:存在.设每本软面笔记本花费m元(1≤m≤12,且m为整数),则每本硬面笔记本花费(m+a)元.由题意,得12m =21m+a,解得a=34m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,128=2114=1.5(不符合题意).∴a的值为3或9.8.【答案】:D【解析】:设甲工程队计划完成此项目的天数为x天,由题意,得x−3x +x−6x=1,解得x=9,经检验,x=9是原分式方程的根,且符合题意.故选D9.【答案】:4【解析】:∵一台甲型挖土机4天挖完了这块地的13,∴甲型挖土机12天全部挖完这块地,故甲1天完成总工作量的112,设乙型挖土机单独挖这块地需要x天,根据题意可得13+212+2x=1,解得x=4.经检验,x=4是原方程的根,且符合题意.∴乙型挖土机单独挖完这块地需要4天10.【答案】:解:设原计划x天完成植树任务,则乙队单独完成植树任务的时间是(x+3)天.由题意,得2(1x +1x+3)+x−2x+3=1,解得x=6.经检验,x=6是原方程的解且符合题意.答:原计划6天完成植树任务11.【答案】:A12.【答案】:20千米/时【解析】:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意,得15 x −151.5x=1560,解得x=20.经检验,x=20是原方程的解且符合题意.则抢修车的速度为20千米/时13.【答案】:A14.【答案】:解:设骑车学生的速度为x km/h,则汽车的速度为2x km/h.根据题意,得10x =102x+2060,解得x=15.经检验,x=15是原方程的解且符合题意,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.。
2021秋八年级数学上册第二章分式与分式方程2、4分式方程第3课时分式方程的应用鲁教版五四制

5×20×(1+20%)×2
4y00+2
400·(10-2)=24
000.
解得 y=480.
经检验,y=480 是原方程的根,且符合题意.
故原计划安排的工人人数为 480 人.
11.【 中考·日照】某市为创建全国文明城市,开展 “美化绿化城市”活动,计划经过若干年使城区 绿化总面积新增360万平方米.该项活动自 2013年初开始实施后,实际每年绿化面积是原 计划的1.6倍,这样可提前4年完成任务.
解:问题1 设A型“小黄车”的成本单价为x元,则B型“小黄车” 的成本单价为(x+100)元,依题意得50x+50(x+ 100)=25 000. 解得x=200.∴x+100=300. 故A,B两种型号“小黄车”的成本单价分别是200 元和300元.
问题 2:投放方式 该公司决定采取如下投放方式:甲街区每 1 000 人 投放 a 辆“小黄车”,乙街区每 1 000 人投放8a+a240 辆“小黄车”,按照这种投放方式,甲街区共投放 1 500 辆,乙街区共投放 1 200 辆,如果两个街区共 有 15 万人,试求 a 的值.
(1)甲、乙两种货车每辆可装多少件帐篷?
解:设甲种货车每辆车可装 x 件帐篷,乙种货车每辆 车可装 y 件帐篷,依题意有x1=0x0y0+=2800y,0, 解得xy==8100.0,经检验,xy==81000,是原方程组的解,且 符合实际.故甲种货车每辆车可装 100 件帐篷,乙种 货车每辆车可装 80 件帐篷.
(2)该同学打算用自己的100元压岁钱购买这种笔 和本子,计划100元刚好用完,并且笔和本子 都买,请列出所有购买方案.
解:设恰好用 100 元可购买这种笔 m 支,购买这种本子 n 本,由题意得 10m+6n=100,整理得 m=10-35n. ∵m,n 都是正整数,∴n=5 时,m=7;n=10 时,m =4;n=15,m=1.∴有三种方案: ①购买这种笔 7 支,购买这种本子 5 本; ②购买这种笔 4 支,购买这种本子 10 本; ③购买这种笔 1 支,购买这种本子 15 本.
鲁教版(五四学制)八年级数学上册《第二章分式与分式方程》单元检测卷(附答案)

鲁教版(五四学制)八年级数学上册《第二章分式与分式方程》单元检测卷(附答案)1.写出一个x取任意实数时,一定有意义的分式:.2.若分式|x|−3x−3的值为零,则x=.3.若分式5x+3x2+1的值为负数,则x的取值范围.4.若使分式42m−1的值是整数,则所有符合条件的整数m的和为.5.计算:xx+y ÷x2x2−y2.6.计算:(−b2a )2⋅(3ab)3÷a24b=.7.计算:2a+ba−b +3bb−a的结果是.8.计算x2x−2−x−2=.9.化简(x2x−3+93−x)÷x+32x的结果是.10.若1a −1b=2,那么a+3ab−ba−b的值为.11.若x−3(x+1)(x−1)=Ax+1+Bx−1,那么A−B=.12.已知a1=x+1(x≠0,且x≠−1),a2=1−1a1,a3=1−1a2,⋯,a n=1−1a n−1,则(结果用含x的代数式表示):(1)a2=;(2)a2025=.13.若关于x的分式方程3xx−1=m+21−x+2有增根,则m的值是.14.若关于x的分式方程mx−1=2x−1+1的解为非负数,则m的取值范围是.15.已知关于x的分式方程x+ax−2−5x=1.(1)若分式方程的根是x=5,则a的值为;(2)若分式方程无解,则a的值为.16.某车间接到生产任务,要求生产240个零件.原计划每小时生产a个零件,实际每小时生产的零件个数比原计划每小时生产的零件个数多了10个,那么实际比原计划可以提前小时完成生产任务.17.某工厂为了提高生产效率,更新了工厂设备,现在每台机器平均每天比原来多生产25件产品,若该工厂的机器台数不变,现在每天总的生产能力由2000件提高到了3000件,求原来每台机器平均每天生产多少件产品?设原来每台机器每天生产x件产品,根据题意可列方程为.18.4月万物复苏,是徒步踏青的好时节.某校初三年级举行6千米的徒步踏青活动,在出发1小时后,学生行进速度提高为原来的1.5倍,正好比原计划提前20分钟到达目的地,则本次徒步行完全程共用小时.19.甲、乙两位采购员同去一家面粉公司购买两次面粉,两次面粉的单价不同,两位采购员的购货方式也不同,其中,甲每次购买800kg,乙每次用去600元,设两次购买的面粉单价分别为a元/kg和b元/kg(a,b 是正数,且a≠b),那么甲所购面粉的平均单价是元/kg,乙所购面粉的平均单价是元/kg;在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为元/kg.(结果用含a,b的代数式表示,需化为最简形式)20.对于两个不等的非零实数a,b,若分式(x−a)(x−b)x的值为0,则x=a或x=b.因为(x−a)(x−b)x =x2−(a+b)x+abx=x+abx−(a+b),所以关于x的方程x+abx=a+b的两个解分别为x1=a,x2=b.利用上面建构的模型,解决下列问题:(1)若方程x+px=q的两个解分别为x1=−1,x2=4.则p=(2)已知关于x的方程2x+n 2+n−22x+1=2n的两个解分别为x1,x2(x1<x2),则2x12x2−3的值为参考答案1.解:根据题意,可写分式1x2+1∵x2≥0∵x2+1>0恒成立∵无论x取任何实数,分式1x2+1一定有意义.故答案为:1x2+12.解:∵分式|x|−3x−3的值为0∵|x|−3=0,x−3≠0∵x=−3.故答案为:−3.3.解:∵x2+1>0要使分式5x+3x2+1的值为负数,则5x+3<0解得x<−35故答案为:x<−35.4.解:要使分式42m-1的值是整数,则2m−1是4的因数故2m−1=±1,±2,±4但2m−1是奇数,则2m−1=±1所以m=1或0 ;所以1+0=1;故答案为:1.5.解:xx+y ÷x2x2−y2=xx+y·x2−y2x2=xx+y·(x+y)(x−y)x2=x−yx故答案为:x−yx.6.解:(−b2a )2⋅(3ab)3÷a24b=b24a2⋅27a3b3⋅4ba2=27a故答案为:27a.7.解:2a+ba−b +3bb−a=2a+ba−b−3ba−b=2a+b−3ba−b=2(a−b)a−b=2故答案为:2.8.解:x2x−2−x−2=x2x−2−(x+2)(x−2)x−2=x2−x2+4x−2=4x−2故答案为:4x−2.9.解:(x2x−3+93−x)÷x+32x=x2−9x−3⋅2xx+3=(x+3)(x−3)x−3⋅2xx+3=2x故答案为:2x.10.解:∵1a −1b=bab−aab=b−aab=2∵b−a=2ab,即:a−b=−2aba+3ab−ba−b =a−b+3aba−b=−2ab+3ab−2ab=ab−2ab=−12故答案为:−12.11.解:x−3(x+1)(x−1)=Ax+1+Bx−1=A(x−1)+B(x+1)(x+1)(x−1)=(A+B)x+B−A(x+1)(x−1)∵{A+B=1B−A=−3解得{A=2B=−1∵A−B=2−(−1)=3故答案为3.12.解:(1)∵a1=x+1∵a2=1−1a1=1−1x+1=xx+1(2)同理可得:a 3=1−1a 2=1−1x x+1=1−x+1x =−1x a 4=1−1a 3=1+x a 5=1−1a 4=1−1x +1=x x +1…∵发现:每三个为一个循环∵2025÷3=675∵a 2025=a 3=−1x故答案为:(1)x x+1(2)−1x . 13.解:3x x−1=m+21−x +2去分母得:3x =−(m +2)+2(x −1)去括号得:3x =−m −2+2x −2移项、合并同类项得:x =−m −4∵分式方程3x x−1=m+21−x +2有增根∵−m −4=1,解得:m =−5故答案为:−5.14.解:m x−1=2x−1+1两边同时乘以x −1,得m =2+(x −1)∴x =m −1检验得,当x =1时,方程有增根∴m −1≠1解得m ≠2由于关于x 的分式方程m x−1=2x−1+1的解为非负数∴m −1≥0解得m ≥1故m 的取值范围是m ≥1且m ≠2故答案为:m ≥1且m ≠2.15.解:(1)∵分式方程的根是x =5∴5+a3−1=1解得a=1∴a的值为1;(2)①去分母得:ax−3x+10=0∴当a−3=0时,方程无解∴a=3②当分式方程有增根∴x=0或2当x=0时0−0+10≠0当x=2时2a−6+10=0∴a=−2∴a的值为−2;∴a=−2∴若分式方程无解,a的值为3或−2.16.解:根据题意:240a −240a+10=2400a(a+10)故答案为:2400a(a+10).17.解:设原来每台机器每天生产x件产品,则现在每台机器平均每天生产(x+25)件产品∵机器台数不变,现在每天总的生产能力由2000件提高到了3000件∵3000 25+x =2000x故答案为:300025+x =2000x18.解:设原来的速度为每小时x千米,则提速后的速度为每小时1.5x千米,则,由题意,得:6 x −1−6−x1.5x=2060解得:x=3经检验,x=3时原方程的解∵本次徒步行完全程共用63−2060=53小时;故答案为:53.19.解:由题意可得,甲购买面粉的平均单价是:800a +800b 800+800=a +b 2乙购买面粉的平均单价是:600+600600a +600b=2ab a +b 在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为:a +b 2−2ab a +b =(a +b )2−4ab 2(a +b)=(a −b )22(a +b )∵(a −b )22(a +b )≥0 ∴高的平均单价与低的平均单价的差值为:(a−b )22(a+b ).故答案为:a+b 2;2ab a+b ;(a−b )22(a+b ). 20.解:(1)由材料可知:x 1x 2=p ,x 1+x 2=q∵p =−1×4=−4;故答案为:−4.(2)∵2x +n 2+n−22x+1=2n ∵2x +1+n 2+n−22x+1=2n +1 ∵2x +1+(n+2)(n−1)2x+1=(n +2)+(n −1) ∵2x +1=n −1或2x +1=n +2∵x =n−22或x =n+12∵x 1<x 2∵x 1=n−22,x 2=n+12 ∵2x 12x 2−3=2×n−222×n+12−3=n−2n+1−3=n−2n−2=1 故答案为:1.。
鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习能力提升训练题(含答案)

鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习能力提升训练题(含答案)一.选择题:1.在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.2.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2B.x=﹣4,或x=2C.x=﹣4D.x=23.分式中,当x=﹣a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠﹣时,分式的值为零D.若a≠时,分式的值为零4.已知===,则=()A.B.C.D.5.下列分式的约分中,正确的是()A.=﹣B.=1﹣yC.=D.=6.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.47.以下给出三个结论()(1)若1﹣(x﹣1)=x,则2﹣x﹣1=2x;(2)若,则;(3)若x﹣,则x﹣1=﹣1.其中正确的结论共有()A.0个B.1个C.2个D.3个8.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣29.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+10.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m,第二次相遇时离B点60m,则圆形跑道的总长为()A.240m B.360m C.480m D.600m二.填空题:11.观察下列分式:,,,,,…,猜想第n个分式是.12.若式子有意义,则x的取值范围是.13.若分式的值为0,则x的值是.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.15.约分的结果是.16.若关于x的方程=无解,则m的值是.17.分式方程=1的解是x=.18.解分式方程+=时,设=y,则原方程化为关于y的整式方程是.19.若解关于x的方程产生增根,则m的值为.20.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为.三.解答题:21.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:==+=1+.(1)请写出分式的基本性质;(2)下列分式中,属于真分式的是;A.B.C.﹣D.(3)将假分式,化成整式和真分式的形式.22.约分(1)(2)23.计算题①|﹣2|﹣(﹣1)0+(﹣)﹣2+(﹣1)2019②(2x﹣3)2﹣(2x+3)(2x﹣3)③④(x2y﹣2xy2+y3)÷y+(x+2y)(x﹣y)24.计算:.25.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.26.(1)解方程:.(2)解不等式组:.27.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:28.我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要1.1万元,乙工程队要0.8万元,工程小组根据甲、乙两队标书的测算,有三种方案:(A)甲队单独完成这个工程,刚好如期完成;(B)乙队单独完成这个工程要比规定时间多用5天;(C)**********,剩下的工程由乙队单独做,也正好如期完成.方案C中“星号”部分被损毁了.已知,一个同学设规定的工期为x天,根据题意列出方程:(1)请将方案(C)中“星号”部分补充出来;(2)你认为哪个方案节省工程款,请说明你的理由.参考答案:一.选择题:1.在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.解:分母含有字母的式子是分式,整式2,x+3,中,抽到x+3做分母时组成的都是分式,共有3×2=6种情况,其中x+3分母的情况有2种,所以能组成分式的概率==.故选:A.2.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2B.x=﹣4,或x=2C.x=﹣4D.x=2解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.3.分式中,当x=﹣a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠﹣时,分式的值为零D.若a≠时,分式的值为零解:由3x﹣1≠0,得x≠,故把x=﹣a代入分式中,当x=﹣a且﹣a≠时,即a≠﹣时,分式的值为零.故选:C.4.已知===,则=()A.B.C.D.解:∵===,∴b=2a,d=2c,f=2e,把b=2a,d=2c,f=2e代入===,故选:C.5.下列分式的约分中,正确的是()A.=﹣B.=1﹣yC.=D.=解:A.=,此选项约分错误;B.不能约分,此选项错误;C.==,此选项正确;D.==,此选项错误;故选:C.6.若数a使得关于x的分式方程﹣=5有正数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的个数为()A.1B.2C.3D.4解:解方程﹣=5,得:x=,∵分式方程的解为正数,∴a+2>0,即a>﹣2,又x≠1,∴≠1,即a≠2,则a>﹣2且a≠2,∵关于y的不等式组有解,∴a﹣1≤y<6﹣2a,即a﹣1<6﹣2a,解得:a<,综上,a的取值范围是﹣2<a<,且a≠2,则符合题意的整数a的值有﹣1、0、1,3个,故选:C.7.以下给出三个结论()(1)若1﹣(x﹣1)=x,则2﹣x﹣1=2x;(2)若,则;(3)若x﹣,则x﹣1=﹣1.其中正确的结论共有()A.0个B.1个C.2个D.3个解:(1)方程两边都乘2得2﹣x+1=2x,错误;(2)由于不确定x+1是否为0,所以不能两边都除以,错误;(3)方程两边都乘x﹣1得x(x﹣1)﹣1=﹣1,错误.故选:A.8.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.9.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.10.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m,第二次相遇时离B点60m,则圆形跑道的总长为()A.240m B.360m C.480m D.600m解:如图,设圆形跑道总长为2s,又设甲乙的速度分别为v,v′,再设第一次在C点相遇,根据题意得:化简得:,解此方程得S=0(舍去)或S=240.所以2S=480米.经检验是方程的解;故选:C.二.填空题:11.观察下列分式:,,,,,…,猜想第n个分式是.解:由分析可得第n项的分母应为x n+1,分子为:,第n个分式是,故答案为:.12.若式子有意义,则x的取值范围是x≠3.解:∵式子有意义,∴x的取值范围是:x﹣3≠0,解得:x≠3.故答案为:x≠3.13.若分式的值为0,则x的值是﹣1.解:由分式的值为0,得x+1=0且x﹣1≠0.解得x=﹣1,故答案为:﹣1.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.解:==,故答案为:.15.约分的结果是﹣.解:=﹣=﹣,故答案为:.16.若关于x的方程=无解,则m的值是1.解:去分母得:x﹣1=m,由分式方程无解,得到x﹣2=0,即x=2,把x=2代入整式方程得:m=1,故答案为:117.分式方程=1的解是x=1.解:=1,去分母,得3x=x+2.整理得2x=2,解方程得x=1.经检验x=1是原分式方程的解.故原分式方程的解是x=1.故答案为:1.18.解分式方程+=时,设=y,则原方程化为关于y的整式方程是y2﹣y+1=0.解:设=y,则原方程化为y+﹣=0两边都乘以y,得y2﹣y+1=0,故答案为:y2﹣y+1=0.19.若解关于x的方程产生增根,则m的值为3.解:方程两边同乘x﹣1得:x+3=m+1,解得:x=m﹣2,方程产生增根,当x﹣1=0,即x=1时,方程产生增根,∴m﹣2=1,∴m=3.故答案为:3.20.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为=.解:设A种树苗的单价为x元,则B种树苗的单价为(x﹣10)元,所以用600元购买A 种树苗的棵数是,用450元购买B种树苗的棵数是.由题意,得=.故答案是:=.三.解答题:21.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:==+=1+.(1)请写出分式的基本性质分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.;(2)下列分式中,属于真分式的是C;A.B.C.﹣D.(3)将假分式,化成整式和真分式的形式.解:(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故ABD选项是假分式.故选C.(3)=m﹣1+22.约分(1)(2)解:(1)原式==;(2)原式===.23.计算题①|﹣2|﹣(﹣1)0+(﹣)﹣2+(﹣1)2019②(2x﹣3)2﹣(2x+3)(2x﹣3)③④(x2y﹣2xy2+y3)÷y+(x+2y)(x﹣y)解:①原式=2﹣﹣1+9﹣1=9﹣;②原式=4x2﹣12x+9﹣(4x2﹣9)=4x2﹣12x+9﹣4x2+9=﹣12x+18;③原式=﹣••(﹣)=;④原式=x2﹣2xy+y2+x2﹣xy+2xy﹣2y2=2x2﹣xy﹣y2.24.计算:.解:原式=,=,=,=﹣1.25.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.26.(1)解方程:.(2)解不等式组:.解:(1)去分母,得1=3(x﹣3)﹣x.(1分)去括号,得1=3x﹣9﹣x.(2分)解得x=5.(3分)经检验,x=5 是原方程的解.(4分)(2)解不等式(1)得:x≥1;…(1分)解不等式(2)得:x<5;…(2分)所以不等式组的解集为1≤x<5.…(4分)27.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:设=a,=b,原方程化为:②×3﹣①×2得:27b﹣12b=1∴b=③将③代入②得:4a+9×=1∴a=∴∴甲公司单独完成需10周,乙公司单独完成需15周.28.我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要1.1万元,乙工程队要0.8万元,工程小组根据甲、乙两队标书的测算,有三种方案:(A)甲队单独完成这个工程,刚好如期完成;(B)乙队单独完成这个工程要比规定时间多用5天;(C)**********,剩下的工程由乙队单独做,也正好如期完成.方案C中“星号”部分被损毁了.已知,一个同学设规定的工期为x天,根据题意列出方程:(1)请将方案(C)中“星号”部分补充出来甲、乙两队合作4天;(2)你认为哪个方案节省工程款,请说明你的理由.解:(1)根据题意及所列的方程可知被损毁的部分为:甲、乙两队合作4天;故答案为:甲、乙两队合作4天;(2)设规定的工期为x天,根据题意列出方程:,解得:x=20.经检验:x=20是原分式方程的解.这三种施工方案需要的工程款为:(A)1.1×20=22(万元);(B)0.8×(20+5)=20(万元);(C)4×1.1+20×0.8=20.4(万元).综上所述,B方案可以节省工程款。
鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习培优提升训练题(含答案)

鲁教版2020-2021学年度八年级数学上册第二章分式与分式方程期末复习培优提升训练题(含答案)1.自然数a,b,c,d满足=1,则等于()A.B.C.D.2.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.B.C.D.3.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时4.若=2,则=5.•=.6.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么(B+1)﹣(A+1)=.7.直接写出结果:(1)=;(2)=.8.已知=,则代数式的值是.9.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.10.已知:,则(y﹣x)的值是.11.方程组的解是.12.①已知x=3是方程=1的一个根,则a=;②已知x=1是方程的一个增根,则k=.13.甲做90个机器零件所用的时间和乙做120个所用的时间相等,又知甲、乙两人每小时共做35个机器零件,问甲、乙每小时各做多少个机器零件.解:设甲每小时做x个机器零件,则乙每小时做个机器零件,依题意可列方程.14.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.15.约分(1)(2).16.通分,,.17.自学下面材料后,解答问题.分母中含有未知数的不等式叫做分式不等式.如:>0;<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:①若>0,则或②若<0,则或.根据上述规律,①求不等式<0的解集.②直接写出不等式解集为x>3或x<1的最简分式不等式.18.已知关于x的分式方程﹣2=的解是正数,求m的取值范围.19.探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.20.解方程:.21.若解关于x的分式方程+=会产生增根,求m的值.参考答案:1.自然数a,b,c,d满足=1,则等于()A.B.C.D.解:=1,只有a、b、c、d自然数都相等的时候,等式才成立,即:a =b=c=d=2;将a、b、c、d结果代入=.故选:D.2.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.B.C.D.解:设实际参加游览的同学共x人,根据题意得:﹣=3.故选:D.3.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.解得x=20经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.4.若=2,则=解:由=2,得x+y=2xy则===.故答案为.5.•=.解:•=.故答案为:.6.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=.类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么(B+1)﹣(A+1)=.解:=+==,∵=,∴=,则,解得:,所以(B+1)﹣(A+1)=3﹣2=,故答案为:.7.直接写出结果:(1)=;(2)=.解:(1)=1+=;(2)=a+=a+=.8.已知=,则代数式的值是9.解:∵=,∴a﹣b=3ab,∴原式===9.故答案为9.9.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2;综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1故答案为1.10.已知:,则(y﹣x)的值是4.解:∵,∴,则有;方程组可化为:,解得.经检验:是原方程的解.∴(y﹣x)=4.故答案为:4.11.方程组的解是.解:原方程组化为令x+y+z=k,代入得由(1)+(2)+(3)得由(4)分别减去(1)(2)(3)得由(5)×(6)×(7)得(8)由(8)分别除以(5)(6)(7)得将(9)(10)(11)代入x+y+z=k,得,从而原方程组的解为:.故答案为:.12.①已知x=3是方程=1的一个根,则a=3;②已知x=1是方程的一个增根,则k=﹣1.解:①把x=3代入原方程,得,解得a=3,经检验,a=3是分式方程的解.②方程两边都乘(x+1)(x﹣1),得x(x+1)+k(x+1)=x(x﹣1),把x=1代入得,k=﹣1.13.甲做90个机器零件所用的时间和乙做120个所用的时间相等,又知甲、乙两人每小时共做35个机器零件,问甲、乙每小时各做多少个机器零件.解:设甲每小时做x个机器零件,则乙每小时做(35﹣x)个机器零件,依题意可列方程.解:甲做90个机器零件所用的时间为:,乙做120个所用的时间为:.所列方程为:=.14.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.解:(1)分式是真分式;(2)假分式=1﹣;(3)==2﹣.所以当x+1=3或﹣3或1或﹣1时,分式的值为整数.解得x=2或x=﹣4或x=0或x=﹣2.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4.15.约分(1)(2).解:(1)=;(2)==.16.通分,,.解:它们的最简公分母是3(x﹣3)2(x+3),,,.17.自学下面材料后,解答问题.分母中含有未知数的不等式叫做分式不等式.如:>0;<0等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:①若>0,则或②若<0,则或.根据上述规律,①求不等式<0的解集.②直接写出不等式解集为x>3或x<1的最简分式不等式.(1)解:由题意得:或第一个不等式组无解,第二个的解集为﹣1<x<2,则原分式不等式的解集为﹣1<x<2.(2)或等,18.已知关于x的分式方程﹣2=的解是正数,求m的取值范围.解:去分母可得:3x﹣2(x﹣6)=m∴3x﹣2x+12=m∴x=m﹣12将x=m﹣12代入最简公分母可知:m﹣12﹣6≠0,∴m≠18∵分式方程的解是正数,∴m﹣12>0,∴m>12∴m的取值范围为m>12且m≠1819.探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=﹣,=﹣;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.20.解方程:.解:设y=,则原方程可化为:y﹣=1;两边同乘以y整理得y2﹣y﹣2=0,解得y1=2,y2=﹣1.当y1=2时,=2,化为;2x2+x﹣1=0,解得x1=﹣1,x2=;当y2=﹣1时,=﹣1,化为;x2﹣x+1=0,∵△<0,∴此方程无实数根;经检验x1=﹣1,x2=都是原方程的根∴原方程的根是x1=﹣1,x2=.21.若解关于x的分式方程+=会产生增根,求m的值.解:去分母得:2x+4+mx=3x﹣6,由分式方程有增根,得到(x+2)(x﹣2)=0,解得:x=2或x=﹣2,当x=2时,4+4+2m=0,即m=﹣4;当x=﹣2时,﹣2m=﹣12,即m=6,综上,m的值是﹣4或6。
八年级上册数学《分式》单元测试含答案

一.选择题
1.若分式 在实数范围内有意义,则实数x的取值范围是()
A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
[答案]D
[解析]
[分析]
直接利用分式有意义的条件分析得出答案.
[详解]∵代数式 在实数范围内有意义,
∴x+2]本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
[分析]
根据题意可得 ,解方程组可得A,B,再代入求值.
[详解]解:∵ ,
∴ ,
解得 ,
∴3A﹣B=6﹣4=2.
故3A﹣B的值是2.
[点睛]本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.
17.先约分,再求值: 其中 .
[答案]
[解析]
分析:先把分式的分子分母分解因式,约分后把A、B的值代入即可求出答案.
∴3x=36.
答:自行车的速度是12km/h,公共汽车的速度是36km/h.
[点睛]本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了 ,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
[答案]
[解析]
[分析]
分式方程两边同乘3(x+1),解出x的解,再检验解是否满足.
[详解]解:方程两边都乘 ,
得: ,
解得: ,
经检验 是方程的解,
原方程的解为 .
[点睛]本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.
16.若A,B为实数,且 ,求3A﹣B的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章分式与分式方程一、选择题1. 下列分式中,最简分式是( )A. 912xB. a2−b 23a+3bC. a+13a+1D. a−22a−42. 下列各等式中成立的有个.( ) ①−(a−b)c=−a−b −c ;②−a−bc=a−b c ;③−a+bc=−a+b c ;④−a+b−c=a−bc. A. 1 B. 2 C. 3 D. 43. 下列各式从左到右的变形正确的是( )A.−x−y x=−x−yx B. a+b a−b =a−ba+b C. 0.2a+b0.2b=2a+b2bD.x−12yy =2x−y2y4. 如果把分式xyx+y 中的x 和y 都扩大2倍,则分式的值( )A. 扩大4倍B. 扩大2倍C. 不变D. 缩小2倍5. 分式x+a3x−1中,当x =−a 时,下列结论正确的是( )A. 分式的值为零B. 分式无意义C. 若a ≠−13时,分式的值为零D. 若a ≠13时,分式的值为零6. 计算yx ÷y 2⋅2y 的结果是( )A. 4xyB. 12xC. yxD. 2y7. 以下是乐乐同学在学习分式运算时解答的四道题:①2÷m ×1m =2;②x 2x−1=x −x 2;③1x−y −1y−x =0;④1x−1−1x 2−x =x x(x−1)−1x(x−1)=1x ,其中解答正确的有( )A. 1道B. 2道C. 3道D. 4道8. 甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米/时,下列方程正确的是( )A.200x =180x−45•12B.200x=220x−45•12C. 200x+45=180x•12 D. 200x+45=220x•129. 关于x 的分式方程m x−2−32−x=1有增根,则−m 22m的值为( ) A. 32B. −32C. −1D. −310. 对于实数a ,b 定义一种运算“※”,规定a※b =1a−b2,如1※3=11−32=−18,则方程x※(−2)=2x−4−3x的解是( ) A. x =4B. x =5C. x =6D. x =711. 从−4、−1、−12、0、12、2、3这七个数中,随机抽取一个数a ,若数a 使关于x 的分式方程ax x−2−3x−2=x 2−x的解为整数,且使不等式组{12(3x −1)≤x +15x +3>a −2x有且仅有四个整数解,那么这七个数中满足所有条件的a 的值之和为( )A. −52B. −2C. 32D. 212. 观察下列等式:a 1=n ,a 2=1−1a 1,a 3=1−1a 2,…;根据其蕴含的规律可得( )A. a 2013=nB. a 2013=n−1nC. a 2013=1n−1D. a 2013=11−n二、填空题13. 若分式|x|−2x 2−5x+6的值为零,则x 的值是______.14. 要使分式x 2−1x+1÷(x −2)有意义,则x 应满足的条件是______.15. 已知x 2−4x +1=0,则x 2+1x 2的值是 . 16. 若关于x 的分式方程x−a x−1−3x=1无解,则a =______.17. 已知5x−4(x−5)(x+2)=Ax−5+Bx+2,则A = ,B = .18. 如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n2020.(n 为正整数),则n 的值为______.三、计算题19.计算:(1)4a2b÷(−a2b )2⋅(−b8a); (2)(x2−y2xy)2÷(x+y)⋅(xx−y)3.20.计算:(1)x−3x−2÷(x+2−5x−2) (2)1−a−ba−2b÷a2−b2a2−4ab+4b2.21.先化简,再求值:a2−2a+1a2−1+(a−1−a−1a+1),其中a=2√2.22.解分式方程(1)2x+xx+3=1 (2)21+x−31−x=6x2−123.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?24.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种,已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元.(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?答案和解析1.C2.A3.D4.B5.C6.A7.A8.D9.A10.C11.A12.D13.−214.x≠−1且x≠215.1416.−2或117.3,218.403919.解:(1)原式=4a2b÷a24b2⋅(−b8a)=4a2b⋅4b2a2⋅(−b8a)=−2b4a;(2)原式=(x+y)2(x−y)2x2y2⋅1x+y.x3(x−y)3=x(x+y)y2(x−y)=x2+xyxy2−y3.20.解:(1)x−3x−2÷(x+2−5x−2)=x−3x−2÷(x+2)(x−2)−5x−2=x−3x−2⋅x−2x2−4−5=x−3x−2⋅x−2(x+3)(x−3)=1x+3;(2)1−a−ba−2b÷a2−b2a2−4ab+4b2=1−a−ba−2b⋅(a−2b)2(a+b)(a−b)=1−a−2ba+b =a+b−(a−2b)a+b=a+b−a+2ba+b=3ba+b.21.解:a2−2a+1a2−1+(a−1−a−1a+1)=(a−1)2(a+1)(a−1)+a2−aa+1=a−1a+1+a2−aa+1=a2−1a+1=a−1当a=2√2时原式=2√2−122.解:(1)去分母得,2(x+3)+x2=x(x+3),去括号得,2x+6+x2=x2+3x,移项得,2x−3x+x2−x2=−6,合并同类得,−x=−6,系数化为1得,x=6,经检验x=6是分式方程的解,∴原方程的解为x=6;(2)21+x −31−x=6x2−1,整理得,2x+1+3x−1=6(x+1)(x−1),去分母得,2(x−1)+3(x+1)=6,去括号得,2x−2+3x+3=6,移项得,2x+3x=6+2−3,合并同类项得,5x=5,系数化为1得,x=1,经检验x=1是分式方程的增根,∴原方程无解.23.解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:80000x =1760002x−4.160000=176000−8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000−150)×58+58×0.8×150−80000−176000=90260(元).答:在这两笔生意中,商场共盈利90260元.24.解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据题意,得480x+10=360x,解得x=30,经检验,x=30是原方程的解且符合题意,当x=30时,x+10=40,答:甲、乙两种树苗每棵的价格分别是30元、40元,(2)设他们再次购买乙种树苗y棵,则购买甲种树苗(50−y)棵,由题意得30×(1−10%)(50−y)+40y≤1500,解得y≤150,13∵y是整数,∴y最大为11,答:他们最多可以购买11棵乙种树苗.第8页,共1页。