2015届高三上学期数学第一次月考(理数)含详细解答

合集下载

江苏省启东中学2015届高三上学期第一次月考数学(理)试题含解析

江苏省启东中学2015届高三上学期第一次月考数学(理)试题含解析

江苏省启东中学2014-2015学年度第一学期第一次月考高三数学(理)试卷【试卷综析】本试卷是高三文科理试卷,考查学生解决实际问题的综合能力,是份较好的试卷.以基础知识和基本能力为载体突出考查考纲要求的基本能力,重视学生科学素养的考查.试题重点考查:集合、命题,函数模型不等式、复数、向量、导数函数的应用、三角函数的性质、三角恒等变换与解三角形等,是一份非常好的试卷。

一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应..... 位置上.... 【题文】1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则=⋂)(B C A U ▲ .【知识点】集合及其运算A1 【答案解析】{2,4,5} ∵全集U={1,2,3,4,5,6.7},B={1,3,5,7}, ∴∁U B={2,4,6},又A={2,4,5},则A ∩(∁U B )={2,4,5}.故答案为:{2,4,5} 【思路点拨】找出全集U 中不属于B 的元素,确定出B 的补集,找出A 与B 补集的公共元素,即可确定出所求的集合.【题文】2.若命题“R x ∈∃,有02≤--m mx x ”是假命题,则实数m 的取值范围是 ▲ .【知识点】命题及其关系A2 【答案解析】[-4,0] ∵命题“∃x ∈R ,有x 2-mx-m <0”是假命题,⇔“∀x ∈R ,有x 2-mx-m ≥0”是真命题.令f (x )=x 2-mx-m ,则必有△=m 2-4m ≤0,解得-4≤m ≤0. 故答案为:[-4,0].【思路点拨】令f (x )=x 2-mx-m ,利用“∃x ∈R ,有x 2-mx-m <0”是假命题⇔△=m 2-4m ≤0,解出即可.【题文】3.已知βα,的终边在第一象限,则“βα>”是“βαsin sin >”的 ▲ 条件.【知识点】充分条件、必要条件A2故答案为:既不必要也不充分条件. 【思路点拨】根据三件函数的定义和关系式,结合充分条件和必要条件的定义进行判断.【题文】4.已知)(x f 的定义域是]4,0[,则)1()1(-++x f x f 的定义域为 ▲ .【知识点】函数及其表示B1【答案解析】[1,3] ∵f (x )的定义域是[0,4],∴f (x+1)+f (x-1)的定义域为不等式组014014x x ≤+≤⎧⎨≤-≤⎩的解集,解得:1≤x ≤3. 故答案为:[1,3]. 【思路点拨】由题意可列不等式组014014x x ≤+≤⎧⎨≤-≤⎩,解之即可.【题文】5.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(-,则=αsin ▲ .【知识点】角的概念及任意角的三角函数C1∴|OP|= 【题文】6.已知曲线33:x x y S -=及点)2,2(P ,则过点P 可向曲线S 引切线,其切线共有▲ 条.【知识点】导数的应用B12【答案解析】3 ∵y=3x-x 3,∴y'=f'(x )=3-3x 2,∵P (2,2)不在曲线S 上, ∴设切点为M (a ,b ),则b=3a-a 3,f'(a )=3-3a 2则切线方程为y-(3a-a 3)=(3-3a 2)(x-a ),∵P (2,2)在切线上,∴2-(3a-a 3)=(3-3a 2)(2-a ),即2a 3-6a 2+4=0, ∴a 3-3a 2+2=0,即a 3-a 2-2a 2+2=0,∴(a-1)(a 2-2a-2)=0,解得a=1或a=1±∴切线的条数为3条,故答案为3. 【思路点拨】求函数的导数,设切点为M (a ,b ),利用导数的几何意义,求切线方程,利用点P (2,2)在切线上,求出切线条数即可.【题文】7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ ▲ .【知识点】同角三角函数的基本关系式与诱导公式C2【答案解析】=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπtan cos cos (cos )sin ∂∂∂-∂∂=-1 【思路点拨】利用三角函数诱导公式同角三角函数基本关系。

重庆市重庆一中2015届高三上期第一次月考_数学(理科)

重庆市重庆一中2015届高三上期第一次月考_数学(理科)

秘密★启用前重庆市重庆一中2015届高三上期第一次月考数学(理科) 2014. 9数学试题共4页.满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一. 选择题: 本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足(1)i i z +=, 则z =( )A. 1122i +B. 1122i -C. 1122i -+D. 1122i --2. 设0.53a =, 3log 2b =, 0.5log 3c =, 则( )A. c b a <<B. c a b <<C. a b c <<D. b c a <<3. 函数22x x y e -+=(03x ?) 的值域是( )A. 3(,1)e -B. 3[,1)e -C. 3(,]e e -D. (1,]e4. 把ln(1)y x =+的图像的纵坐标不变,横坐标伸长为原来的三倍,再向右移动一个单位,得到的函数解析式是( )A. ln 3y x =B. ln 3x y =C. 2ln 3x y += D. ln(32)y x =-5. 函数()2ln 25f x x x =+-的零点个数为( )A. 1B. 2C. 0D. 3 6.若定义在实数集R 上的偶函数)(x f 满足0)(>x f , )(1)2(x f x f =+, 对任意R x ∈恒成立, 则(2015)f =( ) A. 4 B. 3 C. 2 D. 17. 若某程序框图如右图所示, 当输入50时, 则该程序运算后输出的结果是( )A. 8B. 6C. 4D. 28. 如图所示, 医用输液瓶可以视为两个圆柱的组合体. 开始输液时, 滴管内匀速滴下液体(滴管内液体忽略不计), 设输液开始后x 分钟, 瓶内液面与进气管的距离为h 厘米, 已知当0x =时, 13h =. 如果瓶内的药液恰好156分钟滴完. 则函数()h f x =的图像为( )A. B.C. D.9. 函数|1|,1()21,1x a x f x x -ì=ïï=íï+?ïî,若关于x 的方程22()(25)()50f x a f x a -++=有五个不同的实数解, 则a 的取值范围是( )A.55(2,)(,)22+∞UB.(2,)+?C.[2,)+?D. 55[2,)(,)22+?U10. 若定义域在[0,1]的函数()f x 满足: ① 对于任意12,[0,1]x x Î,当12x x <时,都有12()()f x f x ³;②(0)0f =;③1()()32x f f x =;④(1)()1f x f x -+=-,则19()()32014f f +=( )A. 916- B .1732- C .174343- D .5121007-二. 填空题: 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。

2015届高三第一次月考数学卷(理)

2015届高三第一次月考数学卷(理)

2015届高三第一次月考数学卷(理)2015届高三第一次月考数学卷(理)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求的.)1.设全集为,集合,则=().A.B.C.D.2.已知函数的定义域为,则函数的定义域为()A.B.C.D.3.已知函数是奇函数,当时,,且,则的值为()A.B.3C.9D.4.已知命题:关于的函数在[1,+)上是增函数,命题:关于的函数在R上为减函数,若且为真命题,则的取值范围是()A.B.C.D.5.若存在正数x使2x(x-m)1成立,则m的取值范围是()A.(-,+)B.(-2,+)C.(0,+)D.(-1,+)6.为了得到函数的图象,可以把函数的图象()A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度7.今有一组实验数据如下表所示::1.993.04.05.16.121.54.047.51632.01则最佳体现这些数据关系的函数模型是()A.B.C.D.8.函数有极值的充要条件是()A.B.C.D.9.当时,函数的图象大致是()10.定义在R上的函数满足,且对任意都有,则不等式的解集为()A.(1,2)B.(0,1)C.D.(-1,1)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卷中相应的横线上.)11.函数的增区间是____________.12.已知命题p:||命题。

若是的必要而不充分条件,则实数的取值范围为________13.函数的零点个数为________14.已知函数若关于的方程有两个不同的实根,则实数的取值范围是________.15.给出下列四个命题①命题的否定是;②函数在上单调递减;③设是上的任意函数,则||是奇函数,+是偶函数;④定义在上的函数对于任意的都有,则为周期函数;⑤命题p:,;命题q:,。

则命题是真命题;其中真命题的序号是(把所有真命题的序号都填上)。

湖南省长沙市长郡中学2015届高三数学上学期第一次月考试题 理(含解析)湘教版

湖南省长沙市长郡中学2015届高三数学上学期第一次月考试题 理(含解析)湘教版

长郡中学2015届高三月考试卷(一)数 学(理科)【试卷综析】试卷注重对基础知识和基本方法全面考查的同时,又突出了对数学思想、数学核心能力的综合考查, 试卷以考查考生对“双基”的掌握情况为原则,重视基础,紧扣教材,回归课本,整套试卷中有不少题目可以在教材上找到原型.对中学数学教学和复习回归课本,重视对基础知识的掌握起到好的导向作用.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应位置.【题文】1.如果复数212bii -+(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b =( )B. 23C. 23-D. 2【知识点】复数的基本概念;复数代数形式的乘除运算.L4【答案解析】C 解析:由222(4)125bi b b i i ---+=+,依题有2240b b ---=,即23b =-.选C.【思路点拨】复数分子、分母同乘分母的共轭复数,化简为a+bi (a ,b ∈R )的形式,利用实部和虚部互为相反数,求出b . 【题文】2.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m 被抽到的概率为( )A. 1100B. 120 C. 199 D. 150【知识点】简单随机抽样.I1【答案解析】B 解析:由抽样的公平性可知,每个个体入样的概率均为5110020P ==.选B.【思路点拨】依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量为5,可以看成是抽5次,从而可求得概率.【题文】3.设偶函数满足()24(0)xf x x =-≥,则{|()0}x f x >=( ) A. {|24}x x x <->或 B. {|04}x x x <>或 C. {|22}x x x <->或 D. {|06}x x x <>或【知识点】函数的奇偶性.B4【答案解析】C 解析:当0x ≥时,由()240xf x =->,得2x >,由图象对称性可知选C.【思路点拨】由函数的奇偶性解不等式可得结果.【题文】4.若21()nx x -展开式中的所有二项式系数之和为512,则该开式中常数项为( )A. 84-B. 84C. 36-D. 36【知识点】二项式定理系数的性质.J3【答案解析】B 解析:由二项式系数之和为2512n=,即9n =,又18319(1),r r r r T C x -+=- 令1830r -=,则6r =故常数项为784T =.选B.【思路点拨】结合二项式定理,通过令x=-1,即可求出展开式的所有二项式系数的和,然后求出n 的值,利用二项式的通项,求出常数项即可.【题文】5.设条件:|2|3p x -<,条件:0q x a <<,其中a 为正常数.若p 是q 的必要不充分条件,则a 的取值X 围是( )A. (0,5]B. (0,5)C.[5,+∞)D. (5,+∞)【知识点】必要条件、充分条件与充要条件的判断.A2【答案解析】A 解析:由条件p 对应的集合为(1,5)A =-,条件q 对应(0,)(0)B a a =>.且依题意A B=≠=⊃,可知5a ≤,又0a >,故05a <≤.选A.【题文】6.按照如图所示的程序运行,已知输入的x 的值为21log 3+,则输出y 的值为( )A. 112B. 38C. 712D. 1124【知识点】程序框图.L1【答案解析】A 解析:由于输入的初始值为21log 34+<,故221log 312log 3x =++=+,即2log 3211111()()224312y =⨯=⨯=.故选A.【思路点拨】本题考查了选择结构的程序框图,根据框图流程判断算法的功能是解答此类问题的关键.【题文】7.已知一个几何体的三视图及有关数据如图所示, 则该几何体的体积为( )正视图1 12222 侧视图A.B.D.【知识点】由三视图求面积、体积.G2【答案解析】B 解析:由该几何体的三视图可以借用长方体将其还原为直观图如右所示,(由简到繁),由俯视图→侧视图→正视图→直观图,其为四棱锥P ABCD-,所以13P ABCD ABCDV S-=矩,选B.【思路点拨】几何体是四棱锥,结合其直观图,利用四棱锥的一个侧面与底面垂直,作四棱锥的高线,求出棱锥的高,代入棱锥的体积公式计算.【题文】8.设2(),0,()1,0x a xf xx a xx-≤⎧⎪=⎨++>⎪⎩,若(0)f是()f x的最小值,则a的取值X围为( ) A. [-1,2] B. [-1,0] C. [1,2] D. [0,2]【知识点】分段函数的应用.B10【答案解析】D 解析:当0a<时,显然(0)f不是()f x的最小值,当0a≥时,可知0x≤时, 2()(0)f x f a≥=,而当0x>时,1()2f x x a ax=++≥+,依题意22a a+≥,得12a-≤≤,所以02a≤≤即求. 选D.【思路点拨】分别由f(0)=a,1()2f x x a ax=++≥+,22a a+≥综合得出a的取值X围.【题文】9.已知锐角A是ABC∆的一个内角,,,a b c是三角形中各角的对应边,若221sin cos2A A-=,则下列各式正确的是( )A. 2b c a+= B. 2b c a+< C. 2b c a+≤D. 2b c a+≥【知识点】正弦定理.C8【答案解析】C 解析:由221sin cos2A A-=得,1cos22A=-,又A为锐角,故02Aπ<<, 于是223Aπ=,即3Aπ=.于是由余弦定理有2222()3a b c bc b c bc=+-=+-,即22223()()()44b c a b c b c +≥+-+=,解得2a b c ≥+,选C. 【思路点拨】事实上在ABC ∆中,如果三边,,a b c 成等差或等比数列,即22b a c b ac =+=或,那么我们都可以结合重要不等式知识得到60B ≤.本题考查的是其逆向问题. 【题文】10.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示 为=【知识点】函数的图像与性质.B10【答案解析】C 解析:由OP HM PM OM ⋅=⋅,于是HM PM OM =⋅,由三角函数线有,1|sin ||cos ||sin 2|2HM x x x =⋅=,于是1()|sin 2|2f x x =的最大值为1,22T π=,故选C. 【思路点拨】先由三角函数线得1()|sin 2|2f x x =,再求最大值.二、填空题:本大题共5小题,共25分,把答案填在答题卡中对应题号后的横线上.【题文】11.已知直线的极坐标方程为sin()4πρθ+=,则极点到直线的距离为 .【知识点】简单曲线的极坐标方程;与圆有关的比例线段.N3H2【答案解析】 解析:由sin()4πρθ+=化为直角坐标方程为1x y +=,于是极点 (0,0)O 到该直线的距离为d ==,故答案为2 【思路点拨】先将原极坐标方程sin()4πρθ+=中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.【题文】12.设,,x y z 均为正数,满足230x y z -+=,则2y xz 的最小值是 .APM H Ox【知识点】基本不等式.E6【答案解析】3 解析:∵230x y z -+=,∴32x zy =,∴2229666344y x z xz xz xzxzxzxz =,当且仅当x=3z 时取“=”.故答案为3.【思路点拨】由x-2y+3z=0可推出32x zy =,代入2y xz 中,消去y ,再利用均值不等式求解即可.【题文】13.数列{}n a 的前n 项和为n S ,若*111,3,n n a a S n N +==∈,则2014a = .【知识点】数列递推式.D1【答案解析】201234⨯ 解析:由*111,3,n n a a S n N +==∈……①,可推出,21133,3,2n n a a a S n -===≥……②①-②式得,14,2n n a a n +=≥,于是224n n a a -=⨯,2n ≥,故2012201434a =⨯.【思路点拨】借助于*111,3,n n a a S n N +==∈,可得14,2n n a a n +=≥,进而得到结果.【题文】14.若,x y 满足约束条件10,22,2x y y x y +-≥⎧⎪≥-⎨⎪≤⎩,且z kx y =+取得最小值的点有无数个,则k = .【知识点】简单线性规划.E5【答案解析】1k =或 2-解析:先作出可行域如右图: 又目标函数:()l y k x z =-+,依题意0k -≠,所以①当0k ->,即0k <时,依题意有目标直线//l BC 时,当其运动 至与BC 重合时,最优解有无数个,符合题意,即2k -=,即2k =-; ②同理当0k -<,即0k >时,必有//l AB ,即1k -=-,即1k =, 综上①②可知,1k =或 2-为所求.【思路点拨】作出不等式对应的平面区域,利用线性规划的知识,要使z=kx+y 取最小值的最优解有无穷多个,则目标函数和其中一条直线平行,然后根据条件即可求出a 的值.【题文】15.已知椭圆22221(0)x y a b a b +=>>的离心率为,过椭圆上一点M 作直线MA MB 、分别交椭圆于A B 、两点,且斜率为12k k 、,若点A B 、值为 .【知识点】椭圆的简单性质;直线与圆锥曲线的综合问题.H5 H8【答案解析】1213k k ⋅=-解析:由222619b e a =-=,得2213b a =,如右图所示 取BM 中点D ,连结OD ,则由几何意义知,2213OD BMb k k a ⋅=-=-,又//OD AM ,故1OD k k =,即1213k k ⋅=-【思路点拨】本题有一般性结论,即过椭圆2222:1()x y a b a b Γ+=≠的中心的任一条直线l 交椭圆Γ于A B 、两点,P 是椭圆Γ上异于A B 、的任意一点,且当PA PB k k 、都存在时,则有22PA PB b k k a ⋅=-.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)2014年巴西世界杯的志愿者中有这样一组志愿者:有几个人只通晓英语,还有几个人只通晓俄语,剩下的人只通晓法语,已知从中任抽一人恰是通晓英语的概率为12,恰是通晓俄语的人的概率为310,且通晓法语的人数不超过3人.(Ⅰ)求这组志愿者的人数;(Ⅱ)现从这组志愿者中选出通晓英语、俄语和法语的志愿者各1人,若甲通晓俄语,乙通晓法语,求甲和乙不全被选中的概率;(Ⅲ)现从这组志愿者中抽取3人,求3人所会的语种数X 的分布列. 【知识点】概率的应用.K6【答案解析】(Ⅰ)10 (Ⅱ)56 (Ⅲ)见解析解析:(Ⅰ)设通晓英语、俄语、法语人分别有,,x y z 人,且*,,,3x y z N z ∈≤;则依题意有1,23,10x x y z y x y z ⎧=⎪++⎪⎨⎪=⎪++⎩,即,733,x y z y x z =+⎧⎨=+⎩…………………………………………2分消去x 得,*32zy N =∈,当且仅当2z =时,3y =符合正整数条件,所以5x =,也即这组志愿者有10人;………………………………………………………3分 (Ⅱ)记事件A 为“甲、乙不全被选中”,则A 的对立事件A 表示“甲、乙全被选中”,于是1155()1()15326P A P A ⨯⨯=-=-=⨯⨯;…………………………………………………7分(Ⅲ)随机变量X 的可能取值为1,2,3,且由古典概型知33212121535537283310101179(1),(2)120120C C C C C C C C P X P X C C +++======11153231030(3)120C C C P X C ===.………………………………………………………………11分: . ……………………………………………………………12分【思路点拨】(I )设通晓英语的,通晓俄语的,通晓法语的人数,根据通晓英语的人的概率为12,是通晓俄语的人数的概率为310,列出关于所设的人数的表示式,解出结果.(II )本题是一个等可能事件的概率,试验发生包含的事件有C51C31C21种结果,甲通晓俄语,乙通晓法语,则甲和乙不全被选中的对立事件是全被选中,先做出两个人全被选中的概率,用对立事件的概率公式得到甲和乙不全被选中的概率.(III )随机变量X 的可能取值为1,2,3,求出相应的概率,进而可求3人所会的语种数X 的分布列.【题文】17.(本小题满分12分)如图,点A 是单位圆与x 轴的正半轴的交点,点1(2B -. (Ⅰ)若AOB α∠=,求sin2α;(Ⅱ)设点P 为单位圆上的动点,点Q 满足,OQ OA OP =+2(),62AOP ππθθ∠=≤≤()f OB OQ θ=⋅,求()f θ的取值X 围.【知识点】三角函数中的恒等变换应用;任意角的三角函数的定义.C1 C7【答案解析】(Ⅰ)32 (Ⅱ)1[0,]2解析:(Ⅰ)由三角函数定义可知1sin 2y x r r αα====-,所以1sin 22sin cos 2()2ααα==-=,即求…………………………………5分(Ⅱ)由三角函数定义知(cos2,sin 2)P θθ,所以(1cos 2,sin 2),OQ OA OP θθ=+=+所以11()(1cos2)2sin(2)262f OB OQ πθθθθ=⋅=-++=--, 又因62ππθ≤≤,故52666πππθ≤-≤,即1sin(2)126πθ≤-≤,于是10()2f θ≤≤,所以()f θ的取值X 围是1[0,]2.……………………………………12分【思路点拨】(Ⅰ) 直接结合三角函数的定义求解sinα,cosα的值,然后,根据二倍角公式进行求值;(Ⅱ) 首先求解f (θ),然后根据62,确定f (θ)的取值X 围.【题文】18.(本小题满分12分)直三棱柱111ABC A B C -中,5,4,3,AB AC BC ===14AA =,点D 在AB 上.(Ⅰ)若D 是AB 中点,求证:1//AC 平面1B CD ;(Ⅱ)当13BD AB =时,求二面角1B CD B --的余弦值. 【知识点】用空间向量求平面间的夹角;直线与平面平行的判定;二面角的平面角及求法.G4G11【答案解析】(Ⅰ)见解析(Ⅱ)解析:(Ⅰ)连接1BC 交1B C 于点E ,连接DE ,ACDBC 1 A 1B 1ACC 1A 1B 1 E因为直三棱柱中侧面11BCC B 为矩形,所以E 为1BC 的中点,又D 是AB 中点,于是1//DE AC ,且DE ⊂面1B CD ,AC1⊄平面B1CD 所以1//AC 平面1B CD ;…………………………6分 (Ⅱ)由5,4,3,AB AC BC ===知90ACB ∠=,即AC CB ⊥, 又直三棱柱中1AA ⊥面ABC ,于是以C 为原点建立空间 直角坐标系C xyz -如右图所示,于是1(3,0,0),(3,0,4)B B又13BD AB =,由平面几何易知4(2,,0)3D ,显然平面BCD 的一个法向量为1(0,0,1)=n , 又设平面1B CD 的一个法向量为2(,,)x y z =n ,则由212(3,0,4),4(2,,0),3CB CD ⎧⊥=⎪⎨⊥=⎪⎩n n ,得340,4203x x y +=⎧⎪⎨+=⎪⎩,解得4,23x y =-=,取1z =,则24(,2,1)3=-n ,设二面角1B CD B --的平面角为θ, 则1212|||cos |||||θ⋅===⨯n n n n ,又由图知 为锐角,所以其余弦值为.…………………………………………………………………12分【思路点拨】(Ⅰ) 通过作平行线,由线线平行证明线面平行;(Ⅱ) 建立空间直角坐标系,求得两平面的法向量,利用向量法求二面角的余弦值. 【题文】19.(本小题满分13分)在数列{}n a 中,已知*111,21,n n a a a n n N +=-=-+∈. (Ⅰ)求证:{}n a n -是等比数列;(Ⅱ)令,2nn n n a b S =为数列{}n b 的前n 项和,求n S 的表达式.【知识点】数列的求和;等比关系的确定.D3 D4【答案解析(Ⅰ) 见解析(Ⅱ) 222n n n S n +=--解析:(Ⅰ)证明:由*111,21,n n a a a n n N +=-=-+∈可得11(1)2(),120n n a n a n a +-+=--=-≠所以数列{}n a n -以是-2为首项,以2为公比的等比数列………………………………6分(Ⅱ) 由(Ⅰ)得:1222n n n a n --=-⨯=-,所以2nn a n =-,12n n nb =-所以12221212(1)(1)(1)()222222n n n n n nS b b b n =+++=-+-++-=+++-令212222n n n T =+++,则2311122222nn n T +=+++,两式相减得2311111111122222222n n n n n n nT ++=+++-=--,所以222n n n T +=-,即222nn n S n +=--…………………………………………………13分【思路点拨】(Ⅰ)此证明题应从结论中找方法,要证明数列{an-n}是等比数列,将题设中的条件an+1=2an-n+1变形为an+1-(n+1)=2(an-n )即可;(Ⅱ)由(Ⅰ)结论可求出bn ,由通项公式的形式可以看出,本题宜先用分组求和的技巧,然后对其一部分用错位减法求和.最后将结果综合起来.【题文】20.(本小题满分13分)已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线0x y -+=的距离为3.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与直线(0)y kx m k =+≠相交于不同的两点M N 、.当||||AM AN =时,求m 的取值X 围.【知识点】椭圆的标准方程;直线与圆锥曲线的综合问题.H5 H8【答案解析】(Ⅰ) 2213x y += (Ⅱ) 122m <<解析:(Ⅰ)依题意可设椭圆方程为2221x y a +=,右焦点22(,0),1F c c a =-,3=,得c =故2213a c =+=;故椭圆的方程为2213x y +=………5分(Ⅱ)如右图所示,设1122(,),(,)M x y N x y ,MN 的中点为00(,)P x y , 可化为212(1)()2(1)0k x x k m ++++=,且120x x +≠……①…………………………8分 且122031x x k +=-≠+,得0m ≠③式代入①式得,226(1)2(1)031kmk k m k -+++=+, 化简得2231m k =+1>,得12m >,又代入②式得,22m m <,解得02m <<,综上可得122m <<,即为所求...…………………………………………………………13分 【思路点拨】(Ⅰ)依题意可设椭圆方程为2221x y a +=3=解得a2=3,故所求椭圆的方程为2213x y +=.(Ⅱ)设P 为弦MN 的中点,由(0)y kx m k =+≠,2213x y +=,得(3k2+1)x2+6mkx+3(m2-1)=0,由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1.由此可推导出m 的取值X 围. 【题文】21.(本小题满分13分) 已知函数()ln 3()f x a x ax a R =--∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45,对于任意的[1,2]t ∈,函数32()[()]2m g x x x f x '=++在区间(,3)t 上总不是单调函数,求m 的取值X 围;(Ⅲ)求证:*ln 2ln3ln 4ln 1(2,)234n n N n n ⨯⨯⨯⨯<≥∈.【知识点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.B12【答案解析】(Ⅰ) 见解析(Ⅱ) 3793m -<<- (Ⅲ)见解析解析:(Ⅰ)由(1)()(0)a x f x x x -'=>,.………………………………………………………1分①当0a >时,显然01x <<时,()0f x '>,当1x >时,()0f x '<,所以此时()f x 的单调递增区间为(0,1),递减区间为(1,)+∞, ②同理当0a <时,()f x 的单调递增区间为(1,)+∞,递减区间为(0,1),③当0a =时,()3f x =-不是单调函数;.……………………………………………………4分(Ⅱ)由题知,(2)12a f '=-=,得2a =-,所以()2ln 23f x x x =-+-.所以32()(2)2,02mg x x x x x =++->,且2()3(4)2,0g x x m x x '=++->,……………6分令()0g x '=时,可知2(4)240m ∆=++>恒成立,即()0g x '=一定有两个不等实根12,x x , 且注意到1223x x =-<,所以不妨设120x x <<,又0x >,于是可知 20x x <<时,()0g x '<,又2x x >时,()0g x '>即()g x 在2(0,)x 上递减,在2(,)x +∞上递增,依题意可知2(,3)x t ∈,于是只须2()03(4)20(3)03370g t t m t g m '<++-<⎧⎧⇔⎨⎨'>+>⎩⎩,…………………………………………7分又以上事实对[1,2]t ∈恒成立.故(1)50(2)21803370g m g m m '=+<⎧⎪'=+<⎨⎪+>⎩,得3793m -<<-;……………9分(Ⅲ)分析:要证*ln 2ln3ln 4ln 1(2,)234n n N n n ⨯⨯⨯⨯<≥∈成立,即证ln 2ln3ln 4ln 123(1),2n n n ⨯⨯⨯⨯<⨯⨯⨯⨯-≥,也即证,ln 1,n n n <-≥2成立,而这是我们众所周知的超越不等式,下面用综合法证明. 证明过程:由(Ⅰ)知当1a =-时,()ln 3f x x x =-+-在(1,)+∞上递增,所以()ln 3(1)2ln 1,1f x x x f x x x =-+->=-⇔<->………………………………11分 也所以在上式中分别令2,3,4,,x n =得,ln21,ln32,ln43,,ln 1,2n n n <<<<-≥,以上同向正数不等式相乘得ln 2ln3ln 4ln 123(1),2n n n ⨯⨯⨯⨯<⨯⨯⨯⨯-≥两边同除以!n 得,*ln 2ln3ln 4ln 1(2,)234n n N n n ⋅⋅⨯⨯<≥∈,即证.…………………13分【思路点拨】利用导数求函数的单调区间的步骤是①求导函数f′(x );②解f′(x )>0(或<0);③得到函数的增区间(或减区间),对于本题的(Ⅰ)在求单调区间时要注意函数的定义域以及对参数a 的讨论情况;(Ⅱ)点(2,f (2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a 值,代入得g (x )的解析式,由t ∈[1,2],且g (x )在区间(t ,3)上总不是单调函数可知:(1)50(2)21803370g m g m m '=+<⎧⎪'=+<⎨⎪+>⎩,于是可求m 的X 围.(Ⅲ)是近年来高考考查的热点问题,即与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n 有某些结论成立,进而解答出这类不等式问题的解.。

江苏省启东中学2015届高三上第一次月考数学(理)试题及答案

江苏省启东中学2015届高三上第一次月考数学(理)试题及答案

启东中学2015届高三上学期第一次月考数学试题一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应..... 位置上.... 1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则=⋂)(B C A U ▲ .2.若命题“R x ∈∃,有02≤--m mx x ”是假命题,则实数m 的取值范围是 ▲ .3.已知βα,的终边在第一象限,则“βα>”是“βαsin sin >”的 ▲ 条件.4.已知)(x f 的定义域是]4,0[,则)1()1(-++x f x f 的定义域为 ▲ .5.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(-,则=αsin ▲ .6.已知曲线33:x x y S -=及点)2,2(P ,则过点P 可向曲线S 引切线,其切线共有 ▲ 条. 7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ ▲ . 8.设函数1cos )(3+=x x x f .若11)(=a f ,则=-)(a f ▲ .9.函数|cos |sin cos |sin |)(x x x x x f ⋅+⋅=的值域为 ▲ .10.已知函数x y ωtan =在),(ππ-内是减函数,则实数ω的范围是 ▲ .11.已知偶函数)(x f 在),0(+∞单调递减,则满足)1()1(f xf <的实数x 的取值范围是 ▲ . 12.已知锐角B A ,满足A B A tan 2)tan(=+,则B tan 的最大值是 ▲ .13.已知)(x f 是R 上最小正周期为2的周期函数,且当20<≤x 时,x x x f -=3)(,则函数)(x f y =的图象在区间]6,0[上与x 轴的交点的个数为 ▲ .14.定义在R 上的可导函数)(x f ,已知)(x f e y '=的图象如图所示,则)(x f y =的增区间是 .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答. 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知集合}0)]4()][1([|{},1121|{<+-+-=++-==a x a x x B x x y x A .分别根据下列条件,求实数a 的取值范围.(1)A B A =⋂; (2)φ≠⋂B A16.(本小题满分14分)设a 为实数,给出命题p :关于x 的不等式a x ≥-|1|)21(的解集为φ,命题q :函数]89)2(lg[)(2+-+=x a ax x f 的定义域为R ,若命题“q p ∨”为真,“q p ∧”为假,求实数a 的取值范围.17.(本小题满分15分)已知定义域为R 的函数mn x f x x ++-=+122)(是奇函数. (1)求实数n m ,的值;(2)若存在]2,1[∈t ,不等式0)2()2(22<-+-k t f t t f 成立,求实数k 的取值范围.18.(本小题满分15分)设函数1cos 3sin )(++=x x x f .(1)求函数)(x f 在]2,0[π的最大值与最小值;(2)若实数c b a ,,使得1)()(=-+c x bf x af 对任意R x ∈恒成立,求a cb cos 的值.19.(本小题满分16分)已知某种型号的电脑每台降价x 成(1成为10%),售出的数量就增加mx 成(m 为常数,且0>m ).(1)若某商场现定价为每台a 元,售出b 台,试建立降价后的营业额y 与每台降价x 成所成的函数关系式.并问当45=m ,营业额增加1.25%时,每台降价多少? (2)为使营业额增加,当)100(00<<=x x x 时,求m 应满足的条件.20.(本小题满分16分)设函数)()(R a a ax e x f x ∈+-=,其图像与x 轴交于)0,(),0,(21x B x A 两点,且21x x <.(1)求a 的取值范围;(2)证明:0)(21<'x x f ()(x f '为函数)(x f 的导函数);(3)设点C 在函数)(x f y =的图象上,且ABC ∆为等腰直角三角形,记t x x =--1112,求)1)(1(--t a 的值.参考答案15.(本小题满分14分)(1);(2)16.(本小题满分14分)8≥a 或121≤<a . 17.(本小题满分15分)(1)1,2==n m ;(2)1<k .。

【解析】江苏省扬州市宝应中学2015届高三上学期第一次月考数学试卷Word版含解析

【解析】江苏省扬州市宝应中学2015届高三上学期第一次月考数学试卷Word版含解析

2014-2015学年江苏省扬州市宝应中学高三(上)第一次月考数学试卷一、填空题:(本大题共14小题,每小题5分,共70分.)1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a= .2.若(其中表示复数z的共轭复数),则复数z的模为.3.运行如图语句,则输出的结果T= .4.已知向量=(1,2),=(﹣3,2),则(+)•= .5.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行则实数a= .6.若命题“∃x∈R,使得ax2+ax+1≤0”为假命题,则实数a的取值范围为.7.若m∈(0,3),则直线(m+2)x+(3﹣m)y﹣3=0与x轴、y轴围成的三角形的面积小于的概率为.8.要得到函数y=cos2x的图象,需将函数y=sin(2x+)的图象向左至少平移个单位.9.直线2x﹣y+3=0与椭圆=1(a>b>0)的一个焦点和一个顶点的连线垂直,则该椭圆的离心率为.10.已知函数y=x2+(a∈R)在x=1处的切线与直线2x﹣y+1=0平行,且此切线也是圆x2+y2+mx ﹣(3m+1)y=0的切线,则m= .11.已知函数f(x)=x3+x2+(2a﹣1)x+a2﹣a+1若函数f(x)在(1,3]上存在唯一的极值点.则实数a的取值范围为.12.若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= .13.已知函数f(x)=﹣x2+(m﹣2)x+2﹣m,且y=|f(x)|在[﹣1,0]上为单调减函数,则实数m的取值范围为.14.已知椭圆C1:=1(a>b>0)和圆C2:x2+y2=r2都过点P(﹣1,0),且椭圆C1的离心率为,过点P作斜率为k1,k2的直线分别交椭圆C1,圆C2于点A,B,C,D(如图),k1=λk2,若直线BC恒过定点Q(1,0),则λ= .二、解答题:(本大题共6小题,共90分.)15.如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cosα=﹣.(1)求cos∠CAD;(2)求BC边上高的值.16.已知圆C的一般方程为:x2+y2﹣2x+2y﹣2=0(1)过点P(3,4)作圆C的切线,求切线方程;(2)直线l在x,y轴上的截距相等,且l与圆C交于A,B两点,弦长|AB|=,求直线l的方程.17.设命题p:函数的定义域为R,命题q:不等式,对一切正实数x恒成立,如果“p或q”为真,“p且q”为假,求实数a 的取值范围.18.为丰富农村业余文化生活,决定在A,B,N三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD的两个顶点A,B和以边AB的中心M为圆心,以MC 长为半径的圆弧的中心N处,且AB=8km,BC=4km.经协商,文化服务中心拟建在与A,B 等距离的O处,并建造三条道路AO,BO,NO与各村通达.若道路建设成本AO,BO段为每公里a万元,NO段为每公里a万元,建设总费用为w万元.(1)若三条道路建设的费用相同,求该文化中心离N村的距离;(2)若建设总费用最少,求该文化中心离N村的距离.19.已知A(﹣2,0),B(2,0),点C、D依次满足.(1)求点D的轨迹;(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为,且直线l与点D的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PA,PB都相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.20.已知函数f(x)=x3﹣x﹣.(I)求函数y=f(x)的零点的个数;(Ⅱ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)﹣g(s)>e+2﹣.2014-2015学年江苏省扬州市宝应中学高三(上)第一次月考数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分.)1.已知集合A={1,4},B={0,1,a},A∪B={0, 1,4},则a= 4 .考点:并集及其运算.专题:集合.分析:由已知中集合A={1,4},B={0,1,a},A∪B={0,1,4},可得:a∈A,再由集合元素的互异性,可得答案.解答:解:∵集合A={1,4},B={0,1,a},A∪B={0,1,4},∴a∈A,即a=1,或a=4,由集合元素的互异性可得:a=1不满足条件,故a=4,故答案为:4点评:本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.2.若(其中表示复数z的共轭复数),则复数z的模为 3 .考点:复数求模.专题:计算题.分析:先设z=a+bi,则=a﹣bi,由可得a2+b2,从而可求复数z的模解答:解:设z=a+bi,则=a﹣bi∵∴(a+bi)(a﹣bi)=a2﹣b2i2=a2+b2=9∴|z|==3故答案为:3点评:本题主要考查了复数基本概念;复数的模,共轭复数及复数的基本运算,属于基本试题3.运行如图语句,则输出的结果T= 625 .考点:伪代码.专题:计算题;图表型.分析:本题所给的是一个循环结构的算法语句,由图可以看出,此是一个求等差数列和的算法语句,由公式计算出T的值,即可得到答案.解答:解:T=1,I=3,第1次循环,T=1+3,I=5<50,符合循环条件,第2次循环,T=1+3+5,I=7<50,符合循环条件,…,第23次循环,T=1+3+…+47,I=49<50,符合循环条件,第24次循环,T=1+3+…+49,I=51>50,不符合循环条件,输出T,∴T=1+3+…+49==625,∴输出的结果T=625.故答案为:625.点评:本题考查了伪代码,即循环结构的算法语句,解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.4.已知向量=(1,2),=(﹣3,2),则(+)•= 14 .考点:平面向量数量积的运算;平面向量的坐标运算.专题:平面向量及应用.分析:由向量的坐标运算可得+=(﹣2,4),由数量积的坐标运算可得.解答:解:∵=(1,2),=(﹣3,2),∴+=(1,2)+(﹣3,2)=(﹣2,4),∴(+)•=﹣2×(﹣3)+4×2=14故答案为:14点评:本题考查平面向量的数量积的坐标运算,属基础题.5.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行则实数a= ﹣1 .考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行关系可得a的方程,解方程验证可得.解答:解:∵直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+(a2﹣1)=0平行,∴a(a﹣1)﹣2×1=0,解得a=﹣1或a=2,经验证当a=2时,直线重合,a=﹣1符合题意,故答案为:﹣1点评:本题考查直线的一般式方程和直线的平行关系,属基础题.6.若命题“∃x∈R,使得ax2+ax+1≤0”为假命题,则实数a的取值范围为[0,4).考点:特称命题.专题:函数的性质及应用;简易逻辑.分析:命题“∃x∈R,使得ax2+ax+1≤0”为假命题,即ax2+ax+1>0恒成立,分当a=0时和当a≠0时两种情况分别讨论满足条件的a的取值,最后综合讨论结果,可得答案.解答:解:∵命题“∃x∈R,使得ax2+ax+1≤0”为假命题,∴ax2+ax+1>0恒成立,当a=0时,1>0恒成立,满足条件,当a≠0时,若ax2+ax+1>0恒成立,则,解得:a∈(0,4),综上所述:a∈[0,4),故答案为:[0,4)点评:本题考查的知识点是特称命题,恒成立问题,其中正确理解命题“∃x∈R,使得ax2+ax+1≤0”为假命题的含义是ax2+ax+1>0恒成立,是解答的关键.7.若m∈(0,3),则直线(m+2)x+(3﹣m)y﹣3=0与x轴、y轴围成的三角形的面积小于的概率为.考点:几何概型.专题:概率与统计.分析:由题意,分别令x,y=0可得截距,进而可得××<,解不等式可得m的范围,由几何概型求出相等长的比值即可.解答:解:∵m∈(0,3),∴m+2>0,3﹣m>0令x=0,可解得y=,令y=0,可解得x=,故可得三角形的面积为S=××,由题意可得××<,即m2﹣m﹣2<0,解得﹣1<m<2,结合m∈(0,3)可得m∈(0,2),故m总的基本事件为长为3的线段,满足题意的基本事件为长为2的线段,故可得所求概率为:故答案为:点评:本题考查几何概型的求解决,涉及直线的方程和一元二次不等式的解集,属中档题.8.要得到函数y=cos2x的图象,需将函数y=sin(2x+)的图象向左至少平移个单位.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:y=cos2x=sin(2x+),﹣=,把将函数y=sin(2x+)的图象向左至少平移个单位,可得函数ysin[2(x+)+]=sin(2x+)=cos2x的图象,故答案为:.点评:本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.直线2x﹣y+3=0与椭圆=1(a>b>0)的一个焦点和一个顶点的连线垂直,则该椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意得:K AB=﹣=﹣,从而b=,由a2=b2+c2得:的比值,进而求出e=的值.解答:解:画出草图,如图示:,由题意得:k AB=﹣=﹣,∴b=,由a2=b2+c2得:=,∴e==,故答案为:.点评:本题考查了椭圆的简单性质,考查直线的斜率问题,是一道基础题.10.已知函数y=x2+(a∈R)在x=1处的切线与直线2x﹣y+1=0平行,且此切线也是圆x2+y2+mx﹣(3m+1)y=0的切线,则m= .考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;直线与圆.分析:求出函数的导数,求得切线的斜率,由两直线平行的条件可得a,求得切点,求出切线方程,求出圆的圆心和半径,应用直线与圆相切则d=r,由点到直线的距离公式,列出方程,解出m即可.解答:解:∵函数y=x2+(a∈R)在x=1处的切线与直线2x﹣y+1=0平行,∴f′(1)=2,由于f′(x)=2x﹣,即f′(1)=2﹣a=2,解得a=0,函数y=x2,则切点为(1,1),切线方程为:y﹣1=2(x﹣1),即2x﹣y﹣1=0,由于圆x2+y2+mx﹣(3m+1)y=0的圆心为(﹣,),半径为,由直线与圆相切得,=,化简,解得m=.故答案为:.点评:本题考查导数的应用:求切线方程,考查直线与圆相切的条件,考查运算能力,属于中档题.11.已知函数f(x)=x3+x2+(2a﹣1)x+a2﹣a+1若函数f(x)在(1,3]上存在唯一的极值点.则实数a的取值范围为[﹣7,﹣1).考点:利用导数研究函数的极值.专题:计算题;导数的综合应用.分析:求出函数的导数,由已知条件结合零点存在定理,可得f′(1)•f′(3)<0或f′(3)=0,解出不等式求并集即可.解答:解:∵f(x)=x3+x2+(2a﹣1)x+a2﹣a+1,∴f′(x)=x2+2x+2a﹣1,∵函数f(x)在(1,3]上存在唯一的极值点,∴f′(1)•f′(3)<0或f′(3)=0,∴(1+2+2a﹣1)(9+6+2a﹣1)<0或9+6+2a﹣1=0,即有(a+1)(a+7)<0或a=﹣7解得﹣7≤a<﹣1.故答案为:[﹣7,﹣1).点评:本题考查导数的运用:求函数的极值,考查函数的零点存在定理,注意导数为0与函数的极值的关系,属于易错题,也是中档题.12.若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= 32 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据“f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A”求出A点坐标,设B(x1,y1),C(x2,y2),由正弦函数的对称性可知B,C 两点关于A对称即x1+x2=8,y1+y2=0,代入向量的数量积的坐标表示即可求解解答:解:由f(x)=2sin(x+)=0,可得x+=kπ,∴x=6k﹣2,k∈Z∵2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0∴(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故答案为:32.点评:本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.13.已知函数f(x)=﹣x2+(m﹣2)x+2﹣m,且y=|f(x)|在[﹣1,0]上为单调减函数,则实数m的取值范围为m≤0或m≥2 .考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:通过讨论判别式△的范围,得到不等式组,解出即可.解答:解:判别式△=m2﹣8m+12=(m﹣2)(m﹣6),①当△≤0时,即2≤m≤6时,函数f(x)≤0恒成立,∴|f(x)|=﹣f(x)=x2﹣(m﹣2)x+m﹣2,对称轴方程为:x=,∴当≥0即m≥2时符合题意(如图1),此时2≤m≤6;②当△>0时,即m<2或m>6时,方程f(x)=0的两个实根为x=,不妨设x1<x2,由题意及图象得x1≥0 或,即m﹣2≥(如图2)或(如图3)解得m≥2或m≤0,此时m≤0或m>6,综上得m的取值范围是:m≤0或m≥2;故答案为:m≤0或m≥2.点评:本题考查了函数的单调性问题,考查了数形结合思想,分类讨论思想,是一道中档题.14.已知椭圆C1:=1(a>b>0)和圆C2:x2+y2=r2都过点P(﹣1,0),且椭圆C1的离心率为,过点P作斜率为k1,k2的直线分别交椭圆C1,圆C2于点A,B,C,D(如图),k1=λk2,若直线BC恒过定点Q(1,0),则λ= 2 .考点:直线与圆锥曲线的关系.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:根据k1=λk2,应该找到k1,k2的关系式,再结合直线分别与直线相交,交点为A,B,C,D,用k把相应的点的坐标表示出来(将直线代入椭圆的方程消去关于x的一元二次方程,借助于韦达定理将A,B,C,D表示出来),再想办法把Q点坐标表示出来,再利用B,C,Q 三点共线构造出关于k1,k2的方程,化简即可.解答:解:设A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D),由得:,∵x P=﹣1,∴,则点A的坐标为:由得:,∵x P=﹣1,∴,则点B的坐标为:同理可得:,根据B、C、Q三点共线,,结合Q(1,0)所以=λ()化简得λ=2故答案为:2.点评:本题的计算量较大,关键是如何找到k1,k2间的关系表示出来,最终得到λ的值.二、解答题:(本大题共6小题,共90分.)15.如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cosα=﹣.(1)求cos∠CAD;(2)求BC边上高的值.考点:解三角形的实际应用.专题:应用题;解三角形.分析:(1)由二倍角公式cos2α=2cos2α﹣1,可求cosα,根据∠CAD=α﹣45°,即可求cos∠CAD;(2)由(1)得,sin∠CAD=sin(α﹣45°)sinαcos45°﹣sin45°cosα=,再由正弦定理,可求AD,从而可由h=ADsin∠ADB求解.解答:解:(1)∵cos2α=2cos2α﹣1,∴cos2α=,∵α∈(0°,45°),∴cosα=,∴,∵∠CAD=α﹣45°,∴=.(2)由(1)得,sin∠CAD=sin(α﹣45°)=sinαcos45°﹣sin45°cosα=,在△ACD中,由正弦定理得:,∴AD===5,∴高h=ADsin∠ADB==4.点评:本题主要考查了同角平方关系、和差角公式及正弦定理在求解三角形中的应用,解题的关键是熟练应用基本公式.16.已知圆C的一般方程为:x2+y2﹣2x+2y﹣2=0(1)过点P(3,4)作圆C的切线,求切线方程;(2)直线l在x,y轴上的截距相等,且l与圆C交于A,B两点,弦长|AB|=,求直线l的方程.考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)把圆C的一般方程化成标准方程,分当斜率k不存在时和当斜率k存在时两种情况,分别根据圆心到直线的距离等于半径,求出圆的方程,综合可得结论.(2)由题意可得,弦心距d=1,再分直线经过原点和直线不经过原点两种情况,利用点到直线的距离公式求得截距a的值,可得直线l的方程.解答:解:(1)圆C的一般方程为:x2+y2﹣2x+2y﹣2=0化成标准方程为:(x﹣1)2+(y+1)2=4.当斜率k不存在时,圆的切线的方程为x=3.当斜率k存在时,设切线的方程为:y﹣4=k(x﹣3),化成一般式为kx﹣y+4﹣3k=0,圆心(1,﹣1)到直线kx﹣y+4﹣3k=0的距离为d==r=2,解得,.所以直线l的方程为:21x﹣20y+17=0.综上得:直线l的方程为:x=3或21x﹣20y+17=0.(2)当直线过原点时,设直线的方程为:y=kx,化成一般式为:kx﹣y=0.∵弦长|AB|=,所以圆心(1,﹣1)到kx﹣y=0的距离d=1,则,解得k=0,所以直线方程为:y=0(舍去).当直线不过原点时,设直线的方程为:,化成一般式为:x+y﹣a=0,所以,,解得:,所以直线l方程为:.综上得:直线l的方程为:.点评:本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,体现了转化、分类讨论的数学思想,属于基础题.17.设命题p:函数的定义域为R,命题q:不等式,对一切正实数x恒成立,如果“p或q”为真,“p且q”为假,求实数a 的取值范围.考点:命题的真假判断与应用.专题:综合题.分析:由已知中命题p:函数的定义域为R,命题q:不等式,对一切正实数x恒成立,我们可以求出命题p与命题q为真或假时,实数a的取值范围,又由“p或q”为真,“p且q”为假,构造关于a的不等式组,解不等式组即可得到实数a的取值范围.解答:解:p为真⇔在R上恒成立.当a=0时,x<0,解集不为R∴a≠0∴得a>2∴P真⇔a>2(4分)=对一切正实数x均成立∵x>0∴∴∴∴q真⇔a≥1(8分)∵p,q一真一假∴或(10分)∴a∈[1,2](12分)点评:本题考查的知识点是命题的真假判断与应用,其中根据已知条件,求出命题p与命题q为真或假时,实数a的取值范围,是解答本题的关键.18.为丰富农村业余文化生活,决定在A,B,N三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD的两个顶点A,B和以边AB的中心M为圆心,以MC 长为半径的圆弧的中心N处,且AB=8km,BC=4km.经协商,文化服务中心拟建在与A,B 等距离的O处,并建造三条道路AO,BO,NO与各村通达.若道路建设成本AO,BO段为每公里a万元,NO段为每公里a万元,建设总费用为w万元.(1)若三条道路建设的费用相同,求该文化中心离N村的距离;(2)若建设总费用最少,求该文化中心离N村的距离.考点:函数模型的选择与应用.专题:应用题;函数思想;函数的性质及应用.分析:(1)设∠AOB=θ,三条道路建设的费用相同,则,利用三角变换求解.(2)总费用,即,求导判断极值点,令,再转换为三角变换求值解决.解答:解:(1)不妨设∠AOB=θ,依题意得,且,由,若三条道路建设的费用相同,则所以,所以.由二倍角的正切公式得,即,答:该文化中心离N村的距离为.(2)总费用即,令当,所以当有最小值,这时,答:该文化中心离N村的距离为.点评:本题综合考查了函数的性质在实际问题中的应用,转换为三角函数最值求解.19.已知A(﹣2,0),B(2,0),点C、D依次满足.(1)求点D的轨迹;(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为,且直线l与点D的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PA,PB都相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.考点:直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.专题:综合题;圆锥曲线中的最值与范围问题.分析:(1)设C(x0,y0),D(x,y),由可得C、D两点坐标关系①,由||=2可得②,由①②消掉x0,y0即得所求轨迹方程,进而得其轨迹;(2)设直线l的方程为y=k(x+2)椭圆的方程,由l与圆相切可得k2值,联立直线方程与椭圆方程消掉y并代入k2值,可用a表示出由中点坐标公式及MN的中点到y轴的距离为可得a的方程,解出即可;(3)假设存在椭圆上的一点P(x0,y0),使得直线PA,PB与以Q为圆心的圆相切,易知点Q到直线PA,PB的距离相等,根据点到直线的距离公式可得一方程,再由点P在椭圆上得一方程联立可解得点P,进而得到圆的半径;解答:解:(1)设.=(x+2,y),则,.所以,点D的轨迹是以原点为圆心,1为半径的圆.(2)设直线l的方程为y=k(x+2).①椭圆的方程;②由l与圆相切得:.将①代入②得:(a2k2+a2﹣4)x2+4a2k2x+4a2k2﹣a4+4a2=0,又,可得,有,∴,解得a2=8.∴.(3)假设存在椭圆上的一点P(x0,y0),使得直线PA,PB与以Q为圆心的圆相切,则Q到直线PA,PB的距离相等,A(﹣2,0),B(2,0),PA:(x0+2)y﹣y0x﹣2y0,PB:(x0﹣2)y﹣y0x+2y0=0,==d2,化简整理得:,∵点P在椭圆上,∴,解得:x0=2或x0=8(舍)x 0=2时,,r=1,∴椭圆上存在点P,其坐标为(2,)或(2,﹣),使得直线PA,PB与以Q为圆心的圆(x﹣1)2+y2=1相切.点评:本题考查直线方程、圆的方程、椭圆方程及其位置关系,考查学生分析解决问题的能力,综合性强,能力要求较高.20.已知函数f(x)=x3﹣x﹣.(I)求函数y=f(x)的零点的个数;(Ⅱ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:g(t)﹣g(s)>e+2﹣.考点:导数在最大值、最小值问题中的应用.专题:综合题;导数的综合应用.分析:(Ⅰ)易知x=0是y=f(x)的零点,从而x>0时,f(x)=x(x2﹣1﹣),设φ(x)=,利用导数及零点判定定理可求函数零点个数;(Ⅱ)化简得g(x)=lnx+,其定义域是(0,1)∪(1,+∞),求导得g'(x)=,令h(x)=x2﹣(2+a)x+1,则问题转化为h(x)=0有两个不同的根x1,x2,从而△=(2+a)2﹣4>0,且一根在(0,)内,不妨设0<x1<,再由x1x2=1,得0<x1<<e<x2,根据零点判定定理可知只需h()<0,由此可求a的范围;(Ⅲ)由(Ⅱ)可求y=g(x)在(1,+∞)内的最小值为g(x2),y=g(x)在(0,1)内的最大值为g(x1),由(Ⅱ)同时可知x1+x2=2+a,x1x2=1,,x2∈(e,+∞),故g(t)﹣g(s)≥g(x2)﹣g(x1)=lnx2+﹣==(x2>e),令k(x)=lnx2+x﹣=2lnx+x﹣,利用导数可判断k(x)在(e,+∞)内单调递增,从而有k(x)>k(e),整理可得结论;解答:解:(Ⅰ)∵f(0)=0,∴x=0是y=f(x)的一个零点,当x>0时,f(x)=x(x2﹣1﹣),设φ(x)=,φ'(x)=2x+>0,∴φ(x)在(0,+∞)上单调递增.又φ(1)=﹣1<0,φ(2)=3﹣>0,故φ(x)在(1,2)内有唯一零点,因此y=f(x)在(0,+∞)内有且仅有2个零点;(Ⅱ)g(x)=+lnx=+lnx=lnx+,其定义域是(0,1)∪(1,+∞),则g'(x)===,设h(x)=x2﹣(2+a)x+1,要使函数y=g(x)在(0,)内有极值,则h(x)=0有两个不同的根x1,x2,∴△=(2+a)2﹣4>0,得a>0或a<﹣4,且一根在(0,)内,不妨设0<x1<,又x1x2=1,∴0<x1<<e<x2,由于h(0)=1,则只需h()<0,即+1<0,解得a>e+﹣2;(Ⅲ)由(Ⅱ)可知,当x∈(1,x2)时,g'(x)<0,g(x)递减,x∈(x2,+∞)时,g'(x)>0,g(x)递增,故y=g(x)在(1,+∞)内的最小值为g(x2),即t∈(1,+∞)时,g(t)≥g(x2),又当x∈(0,x1)时,g'(x)>0,g(x)单调递增,x∈(x1,1)时,g'(x)<0,g(x)单调递减,故y=g(x)在(0,1)内的最大值为g(x1),即对任意s∈(0,1),g(s)≤g(x1),由(Ⅱ)可知x1+x2=2+a,x1x2=1,,x2∈(e,+∞),因此,g(t)﹣g(s)≥g(x2)﹣g(x1)=lnx2+﹣==(x2>e),设k(x)=lnx2+x﹣=2lnx+x﹣,k'(x)=+1+>0,∴k(x)在(e,+∞)内单调递增,故k(x)>k(e)=2+e﹣,即g(t)﹣g(s)>e+2﹣.点评:本题考查利用导数研究函数的零点、极值、最值,考查转化思想,考查学生综合运用数学知识分析解决问题的能力,综合性强,能力要求比较高.。

山东省潍坊市高三数学上学期第一次月考试卷 理(含解析)

山东省潍坊市2015届高三上学期第一次月考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={y|y=lg(x2+10),x∈R),集合B={x||x﹣2|<1},则(∁U B)∩A=()A.{x|0≤x<1或x>3} B.{x|x=1或x≥3}C.{x|x>3} D.{x|1≤x≤3}2.(5分)下列函数中,与函数定义域相同的函数为()A.B.C.D.y=x3e x3.(5分)已知sin(α+)=,则cos(α+)=()A.B.C.﹣D.﹣4.(5分)“a≥3”是“∀x∈[1,2],x2﹣a≤0”为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知函数f(x)=x2+(m2﹣4)x+m是偶函数,g(x)=x m在(﹣∞,0)内单调递增,则实数m=()A.2 B.±2C.0 D.﹣26.(5分)将函数y=cos2x+1的图象向右平移个单位,再向下平移1个单位后得到的函数图象对应的表达式为()A.y=sin2x B.y=sin2x+2 C.y=cos2x D.y=cos(2x﹣)7.(5分)设命题p:曲线y=e﹣x在点(﹣1,e)处的切线方程:y=﹣ex;命题q:函数y=sinx+(0<x<π)值域为[4,+∞),则下列判断正确的是()A.“p∨q”为真B.“¬p∨q”为真C.“¬p∧q”为真D.“¬p∧¬q”为真8.(5分)函数f(x)=﹣cosxlnx2的部分图象大致是图中的()A.B.C.D.9.(5分)已知函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3,又函数g(x)=|cos(πx)|,则函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数为()A.8 B.7 C.6 D.5二、填空题(共5小题,每小题5分,满分25分)11.(5分)命题“若ab≤0,则a≤0或b≤0”的逆否命题是.12.(5分)已知角α的顶点与原点重合,始边与x轴的非负半轴重合,终边落在射线3x+4y=0(x<0)上,则2sinα+cosα的值为.13.(5分)计算log2sin﹣log cos的值为.14.(5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e2x,f′(x)的最小值为.15.(5分)如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=e x+1;④f(x)=.以上函数是“H函数”的所有序号为.三、解答题(共6小题,满分75分)16.(12分)已知m∈R,设命题P:∃x∈{x|﹣2<x<2},使等式x2﹣2x﹣m=0成立;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.17.(12分)已知函数f(x)=2sin(π﹣x)•cosx+sin2x﹣cos2x,x∈R.(Ⅰ)求函数f(x)在[0,π]上的单调区间.(Ⅱ)若函数f(x)的图象向右平移m(m>0)个单位后,得到的图象关于原点对称,求实数m的最小值.18.(12分)设函数f(x)=log2(ax2﹣2x+2)定义域为A.(Ⅰ)若A=R,求实数a的取值范围;(Ⅱ是否存在实数a,使f(x)的最大值为2?若存在求出a的值,若不存在,说明理由.19.(12分)已知函数f(x)=2cos2(ωx+φ)﹣2sin(ωx+φ)cos(ωx+φ)(ω>0.0<φ<)其图象的两个相邻对称中心的距离为,且过点(﹣,2).(Ⅰ)函数f(x)的达式;(Ⅱ)若f(﹣)=,α是第三象限角,求cosα的值.20.(13分)甲方是一农场,乙方是一工厂.由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格).(1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?21.(14分)已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;(Ⅲ)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.山东省潍坊市2015届高三上学期第一次月考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={y|y=lg(x2+10),x∈R),集合B={x||x﹣2|<1},则(∁U B)∩A=()A.{x|0≤x<1或x>3} B.{x|x=1或x≥3}C.{x|x>3} D.{x|1≤x≤3}考点:交、并、补集的混合运算.专题:集合.分析:求出A中y的范围确定出A,求出B中不等式的解集确定出B,根据全集U=R求出B 的补集,找出B补集与A的交集即可.解答:解:由A中y=lg(x2+10)≥1,得到A={y|y≥1},由B中不等式变形得:﹣1<x﹣2<1,即1<x<3,∴B={x|1<x<3},∵全集U=R∴∁U B={x|x≤1或x≥3},则(∁U B)∩A={x|x≥3或x=1}.故选:B.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)下列函数中,与函数定义域相同的函数为()A.B.C.D.y=x3e x考点:函数的定义域及其求法.专题:计算题;阅读型.分析:原函数的定义域是满足分母不等于0的x的取值集合,然后逐一分析给出的四个选项中函数的定义域,比较后即可得到答案.解答:解:函数定义域是{x|x≠0}.而函数的定义域为{x|x≠kπ,k∈Z},函数的定义域是{x|x>0},函数的定义域是{x|x≠0},函数y=x3e x的定义域是R.所以与函数定义域相同的函数为.故选C.点评:本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量x的取值集合,是基础题.3.(5分)已知sin(α+)=,则cos(α+)=()A.B.C.﹣D.﹣考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用三角函数间的诱导公式即可求得答案.解答:解:∵sin(α+)=,∴cos(α+)=cos[(α+)+]=﹣sin(α+)=﹣,故选:C.点评:本题考查运用诱导公式化简求值,属于基础题.4.(5分)“a≥3”是“∀x∈[1,2],x2﹣a≤0”为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:由恒成立可得a≥4,再由集合{a|a≥4}是集合{a|a≥3}的真子集,可得结论.解答:解:∵“∀x∈[1,2],x2﹣a≤0”为真命题,∴a≥x2,在x∈[1,2]时恒成立,而当x∈[1,2]时,x2的最大值为4,故只需a≥4,因为集合{a|a≥4}是集合{a|a≥3}的真子集,故“a≥3”是“∀x∈[1,2],x2﹣a≤0”为真命题的必要不充分条件,故选B点评:本题考查充要条件的判断,涉及恒成立问题,得出a≥4,并用集合的包含关系是解决问题的关键,属基础题.5.(5分)已知函数f(x)=x2+(m2﹣4)x+m是偶函数,g(x)=x m在(﹣∞,0)内单调递增,则实数m=()A.2 B.±2C.0 D.﹣2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据函数的奇偶性的性质求出m,结合幂函数的性质即可得到结论.解答:解:∵函数f(x)=x2+(m2﹣4)x+m是偶函数,∴f(﹣x)=f(x),即f(﹣x)=x2﹣(m2﹣4)x+m=x2+(m2﹣4)x+m,则﹣(m2﹣4)=m2﹣4,解得m2﹣4=0,解得m=2或﹣2,∵若m=2,g(x)=x2在(﹣∞,0)内单调递减,不满足条件,若m=﹣2,g(x)=x﹣2在(﹣∞,0)内单调递增,满足条件,故选:D点评:本题主要考查函数奇偶性的应用以及幂函数的性质,比较基础.6.(5分)将函数y=cos2x+1的图象向右平移个单位,再向下平移1个单位后得到的函数图象对应的表达式为()A.y=sin2x B.y=sin2x+2 C.y=cos2x D.y=cos(2x﹣)考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:首先把函数解析式中的x变化为,利用诱导公式整理后把函数式右边减1即可得到答案.解答:解:把函数y=cos2x+1的图象向右平移个单位,得=sin2x+1,再向下平移1个单位,得y=sin2x+1﹣1=sin2x.∴将函数y=cos2x+1的图象向右平移个单位,再向下平移1个单位后得到的函数图象对应的表达式为:y=sin2x.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减,是基础题.7.(5分)设命题p:曲线y=e﹣x在点(﹣1,e)处的切线方程:y=﹣ex;命题q:函数y=sinx+(0<x<π)值域为[4,+∞),则下列判断正确的是()A.“p∨q”为真B.“¬p∨q”为真C.“¬p∧q”为真D.“¬p∧¬q”为真考点:复合命题的真假.专题:函数的性质及应用;三角函数的求值;不等式的解法及应用.分析:本题可以先对命题p、q进行化简转化,从而判断出其真假,再根据复合函数真假判断的规律,得到正确选项.解答:解:∵y=e﹣x,∴y′=﹣e﹣x.∴当x=﹣1时,y=e,k=y′=﹣e.∴曲线y=e﹣x在点(﹣1,e)处的切线方程为y﹣e=﹣e(x+1),∴曲线y=e﹣x在点(﹣1,e)处的切线方程:y=﹣ex,∴命题p为真命题∵y=sinx+(0<x<π),∴可设sinx=t,则y=t+,(0<t≤1).∴.∴y=t+在区间(0,1]上单调递减.当t=1时,函数有最小值y=5.∴函数y=sinx+(0<x<π)值域为[5+∞).∴命题q:函数y=sinx+(0<x<π)值域为[4,+∞),不成立.∴命题q为假命题.∴命题p∨q为真命题.故选A.点评:本题考查了利用导函数求切线、由单调性求函数值域以及复合命题真假的判断等知识,有一定的运算量,属于中档题.8.(5分)函数f(x)=﹣cosxlnx2的部分图象大致是图中的()A.B.C.D.考点:函数的图象.专题:图表型.分析:由于函数f(x)=﹣cosxlnx2不是基本初等函数,我们可以用排除法,排除错误答案,最后得到正确的答案,确定函数的奇偶性后,进而排除图象不关于Y轴对称的图象,判断出函数的单调后,排除不满足条件的答案,即可得到正确的结论.解答:解:∵函数f(x)=﹣cosxlnx2为偶函数,∴函数的图象关于Y轴对称,故可以排除C,D答案又∵函数f(x)=﹣cosxlnx2在区间(0,1)上为减函数故可以排除B答案.故选A点评:本题考查的知识点的图象,其中正确分析函数的性质,并根据函数的性质,判断出函数图象的形状是解答本题的关键.9.(5分)已知函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为()A.1 B.2 C.﹣1 D.﹣2考点:定积分在求面积中的应用.专题:导数的综合应用.分析:根据导数的几何意义以及导数的基本运算,结合积分公式,即可得到结论.解答:解:∵函数f(x)=﹣x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,∴函数的导数f′(x)=﹣3x2+2ax+b,且f′(0)=b=0,则f(x)=﹣x3+ax2,∵x轴与函数图象所围区域(图中阴影部分)的面积为,∴由f(x)=﹣x3+ax2=0解得x=0或x=a,由图象可知a<0,则根据积分的几何意义可得﹣=﹣()|=,即a4=1,解得a=﹣1或a=1(舍去),故选:C点评:本题主要考查导数的几何意义的应用以及利用积分求阴影部分的面积的计算,要求熟练掌握导数的应用.10.(5分)设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3,又函数g(x)=|cos(πx)|,则函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数为()A.8 B.7 C.6 D.5考点:函数零点的判定定理.专题:计算题;作图题;函数的性质及应用.分析:由题意函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数可化为函数g(x)与函数f(x)的交点个数,作图分析即可.解答:解:函数h(x)=g(x)﹣f(x)在[﹣,]上的零点个数可化为函数g(x)与函数f(x)的交点个数,由题意作出函数g(x)与函数f(x)的图象如下:由图可知,有5个交点,故选D.点评:本题考查了函数的零点与函数图象的交点的关系,同时考查了学生的作图能力,属于基础题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)命题“若ab≤0,则a≤0或b≤0”的逆否命题是若a>0,且b>0,则ab>0.考点:四种命题.分析:根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,直接写出答案即可.解答:解:根据原命题与逆否命题的关系,知:命题“若ab≤0,则a≤0或b≤0”的逆否命题是“若a>0,且b>0,则ab>0”.故答案为:“若a>0,且b>0,则ab>0”.点评:本题考查了原命题与它的逆否命题之间的相互转化问题,解题时应明确四种命题之间的关系,是基础题.12.(5分)已知角α的顶点与原点重合,始边与x轴的非负半轴重合,终边落在射线3x+4y=0(x<0)上,则2sinα+cosα的值为.考点:任意角的三角函数的定义.专题:三角函数的求值.分析:在角α的终边上任意取一点P(﹣4a,3a),a>0,由任意角的三角函数的定义求得sinα=和cosα=的值,从而求得2sinα+cosα 的值.解答:解:根据角α的终边落在射线3x+4y=0(x<0)上,在角α的终边上任意取一点P (﹣4a,3a),a>0,则r=|OP|==5a,∴sinα===,cosα===﹣,故2sinα+cosα=﹣=,故答案为:.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.13.(5分)计算log2sin﹣log cos的值为﹣2.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:利用对数的运算性质与二倍角的正弦可将原式化为log2sin﹣log cos=log2sin,即可求得答案.解答:解:log2sin﹣log cos=log2sin+log2cos=log2sin==﹣2,故答案为:﹣2.点评:本题考查同角三角函数基本关系的运用,考查二倍角的正弦与对数函数的性质,属于中档题.14.(5分)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e2x,f′(x)的最小值为.考点:简单复合函数的导数.专题:导数的概念及应用.分析:首先求出f(x)的解析式,再求导,最后利用基本不等式求出最小值.解答:解:∵f(e x)=x+e2x,∴f(e x)=lne x+(e x)2,∴f(x)=lnx+x2,x∈(0,+∞)∴f′(x)=≥2=2,当且仅当x=时取等号.故答案为:点评:本题主要考查了函数解析式的求法,求导的运算法则,以及基本不等式,知识点比较多,属于中档题.15.(5分)如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=e x+1;④f(x)=.以上函数是“H函数”的所有序号为②③.考点:函数单调性的性质.专题:新定义;函数的性质及应用.分析:不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)[f(x1)﹣f(x2)]>0,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.解答:解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f (x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数.①y=﹣x3+x+1;y'=﹣3x2+1,则函数在定义域上不单调.②y=3x﹣2(sinx﹣cosx);y’=3﹣2(cosx+sinx)=3﹣2sin(x+)>0,函数单调递增,满足条件.③y=e x+1为增函数,满足条件.④f(x)=.当x>0时,函数单调递增,当x<0时,函数单调递减,不满足条件.综上满足“H函数”的函数为②③,故答案为:②③.点评:本题主要考查函数单调性的应用,将条件转化为函数的单调性的形式是解决本题的关键.三、解答题(共6小题,满分75分)16.(12分)已知m∈R,设命题P:∃x∈{x|﹣2<x<2},使等式x2﹣2x﹣m=0成立;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.考点:复合命题的真假.专题:函数的性质及应用.分析:本题先对命题p、q进行化简转化,再将条件“P∨Q”为真命题,“P∧Q”为假命题,转化为命题p、q中一个命题为真,另一个命题为假,得到关于m的不等式,解不等式,得到本题结论.解答:解:命题p等价于方程x2﹣2x﹣m=0在区间(﹣2,2)上有解.记g(x)=x2﹣2x﹣m,则,∴,∴﹣1≤m<8.命题q:由方程的根的判别式△==4m2﹣12m﹣16>0,得m<﹣1或m>4.∵“P∨Q”为真命题,“P∧Q”为假命题,∴命题p、q中,一个为真,另一个为假.∴当命题p真q假时,m<﹣1或m≥8,当命题p假q真时,﹣1≤m≤4.∴m≤4或m≥8.实数m的取值范围是(﹣∞,4]∪[8,+∞).点评:本题考查了一元二次方程的根的存在性、“或”命题和“且”命题的真假判断,本题计算量较大,属于中档题.17.(12分)已知函数f(x)=2sin(π﹣x)•cosx+sin2x﹣cos2x,x∈R.(Ⅰ)求函数f(x)在[0,π]上的单调区间.(Ⅱ)若函数f(x)的图象向右平移m(m>0)个单位后,得到的图象关于原点对称,求实数m的最小值.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用诱导公式、二倍角公式、两角差的正弦函数公式化简解析式,(Ⅰ)根据正弦函数的单调减区间得:,求出x的范围,结合定义域求出f(x)在[0,π]上的单调区间;(Ⅱ)根据平移法则求出平移后的函数g(x)的解析式,再由图象关于原点对称得到g(0)=0,列出m的方程并化简,根据m的范围求出m的最小值.解答:解:由题意得,f(x)=2sin(π﹣x)•cosx+sin2x﹣cos2x=sin2x﹣cos2x=,(Ⅰ)令得,(k∈Z),又x∈[0,π],所以x∈,则函数f(x)在[0,π]上的单调区间是;(Ⅱ)将函数f(x)=的图象向右平移m(m>0)个单位后,得到函数g(x)==的图象,又其函数图象关于原点对称,则g(0)=0,即,解得m=(k∈Z),因为m>0,令k=﹣1得m=,所以实数m的最小值是.点评:本题考查了诱导公式、二倍角公式、两角差的正弦函数公式,以及正弦函数的性质,三角函数的图象平移变换,属于中档题.18.(12分)设函数f(x)=log2(ax2﹣2x+2)定义域为A.(Ⅰ)若A=R,求实数a的取值范围;(Ⅱ是否存在实数a,使f(x)的最大值为2?若存在求出a的值,若不存在,说明理由.考点:对数函数图象与性质的综合应用.专题:函数的性质及应用.分析:(1)函数f(x)=log2(ax2﹣2x+2)定义域为R则,ax2﹣2x+2>0在x∈R上恒成立,根据二次函数性值判断条件.(2)存在实数a,使f(x)的最大值为2,根据复合函数单调性,可判断即a<0,g(x)max=g ()=4,即+2=4,即可求出a的值.解答:解:(1)因为A=R所以ax2﹣2x+2>0在x∈R上恒成立.①当a=0时,由﹣2x+2>0,得x<1,不成了,舍去.②当a≠0时,由,a,为综上所述,实数a的取值范围:(,+∞)(2)令g(x)=ax2﹣2x+2,有题意知,要使f(x)取最大值为2,则函数g(x)需取得最大值4,抛物线开口向下,即a<0,g(x)max=g()=4,即+2=4,∴a=满足条件.点评:本题考查了对数函数,二次函数的性质,特别是单调性,最值问题,综合考察要求对函数理解很深刻,应用灵活.19.(12分)已知函数f(x)=2cos2(ωx+φ)﹣2sin(ωx+φ)cos(ωx+φ)(ω>0.0<φ<)其图象的两个相邻对称中心的距离为,且过点(﹣,2).(Ⅰ)函数f(x)的达式;(Ⅱ)若f(﹣)=,α是第三象限角,求cosα的值.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)根据二倍角公式、两角和的余弦函数公式化简解析式,再由条件求出函数的周期,由周期公式求出ω的值,再把点代入结合条件和特殊角的余弦值求出φ的值,代入解析式化简即可;(Ⅱ)根据题意把代入解析式化简可得,再根据角的所在的象限和平方关系求出sin()的值,根据两角差的余弦函数公式求出cosα=cos[()﹣]的值.解答:解:(Ⅰ)由题意得,f(x)=2cos2(ωx+φ)﹣2sin(ωx+φ)cos(ωx+φ)=cos(ωx+φ)﹣sin(ωx+φ)+1=,由图象的两个相邻对称中心的距离为得,函数的周期T=π,所以,得ω=2,又过点(﹣,2),则=2,化简得,cosφ=,由0<φ<得,φ=,所以;(Ⅱ)由(Ⅰ)得,=,化简得,,因为α是第三象限角,且<0,则角是第三象限,所以sin()=﹣=﹣,所以cosα=cos[()﹣]=cos()cos+sin()sin==.点评:本题考查了二倍角公式、两角和差的余弦函数公式,以及余弦函数的性质,考查变角在求三角函数值中的应用.20.(13分)甲方是一农场,乙方是一工厂.由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格).(1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?考点:函数模型的选择与应用.专题:应用题.分析:(1)由已知中赔付价格为s元/吨,所以乙方的实际年利润为.我们利用导数法易求出乙方取得最大年利润的年产量(2)由已知得,若甲方净收入为v元,则v=st﹣0.002t2.再由.我们可以得到甲方净收入v与赔付价格s之间的函数关系式,利用导数法,我们易求出答案.解答:解:(1)因为赔付价格为s元/吨,所以乙方的实际年利润为.由,令w'=0,得.当t<t0时,w'>0;当t>t0时,w'<0,所以t=t0时,w取得最大值.因此乙方取得最大年利润的年产量t0为(吨);(2)设甲方净收入为v元,则v=st﹣0.002t2.将代入上式,得到甲方净收入v与赔付价格s之间的函数关系式.又,令v'=0,得s=20.当s<20时,v'>0;当s>20时,v'<0,所以s=20时,v取得最大值.因此甲方应向乙方要求赔付价格s=20(元/吨)时,获最大净收入.点评:函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.21.(14分)已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;(Ⅲ)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的单调性.专题:综合题;压轴题.分析:(Ⅰ)f(x)的定义域为(0,+∞),且,当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;当a>0时,由f′(x)>0,得x>﹣a;由f′(x)<0,得x<﹣a.由此能够判断f(x)的单调性.(Ⅱ)由g(x)=ax﹣,定义域为(0,+∞),知﹣=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,由此能够求出正实数a的取值范围.(Ⅲ)当a=2时,g(x)=2x﹣,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0当x时,g′(x)<0.所以在(0,1)上,,由此能求出实数m的取值范围.解答:解:(Ⅰ)f(x)的定义域为(0,+∞),且,①当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;②当a<0时,由f′(x)>0,得x>﹣a;由f′(x)<0,得x<﹣a;故f(x)在(0,﹣a)上单调递减,在(﹣a,+∞)上单调递增.(Ⅱ)g(x)=ax﹣,g(x)的定义域为(0,+∞),﹣=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,∴ax2﹣5x+a≥0,∴a(x2+1)≥5x,即,∴.∵,当且仅当x=1时取等号,所以a.(Ⅲ)当a=2时,g(x)=2x﹣,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0;当x时,g′(x)<0.所以在(0,1)上,,而“∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立”等价于“g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值”而h(x)在[1,2]上的最大值为max{h(1),h(2)},所以有,∴,∴,解得m≥8﹣5ln2,所以实数m的取值范围是[8﹣5ln2,+∞).点评:本题考查在闭区间上求函数最值的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是2015届高考的重点.解题时要认真审题,仔细解答.。

2015届第一次月考数学理科卷及答案

大方一中2015届高三第一次月考数学理科卷内容:选修2-3分布列以后 选修4—4命题:李 顺 审题:饶贵华参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量。

参考数据:ABADA DACCD CD一、选择题(每小题5,共60分)1.已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( A )A .0.16B .0.32C .0.68D ,0.842.某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是( B )A 32B 16C 8D 20 3.实验测得四组(x,y)的值是(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线的方程是( A )A.y ∧=x +1 B. y ∧=x+2 C. y ∧=2x+1 D. y ∧=x-14.设随机变量X 等可能的取值1,2,3,…,n ,如果3.0)4(=<X P ,那么(D ) A n=3 B n=4 C n=9 D n=105.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有(A ) A b 与r 的符号相同 B a 与r 的符号相同 C b 与r 的相反 D a 与r 的符号相反6.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是(D )A 身高一定是145.83cmB 身高在145.83cm 以上C 身高在145.83cm 以下D 身高在145.83cm 左右7.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是(A)A 模型1的相关指数2R 为0.98B 模型2的相关指数2R 为0.80C 模型3的相关指数2R 为0.50D 模型4的相关指数2R 为0.258.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090yx =+,下列判断正确的是(C ) A 劳动生产率为1000元时,工资为150元 B 劳动生产率提高1000元时,工资提高150元 C 劳动生产率提高1000元时,工资提高90元 D 劳动生产率为1000元时,工资为90元9.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是(C )A 1l 与2l 重合B 1l 与2l 一定平行C 1l 与2l 相交于点),(y xD 无法判断1l 和2l 是否相交10. 直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( D ).A. 相切B. 相离C. 直线过圆心D. 相交但直线不过圆心11.已知随机变量ξ服从二项分布,⎪⎭⎫⎝⎛21,4~B ξ,则()1=ξP 的值为( C ).A .161 B . 81 C . 41 D .2112.与参数方程为()21x tt y t⎧=⎪⎨=-⎪⎩为参数等价的普通方程为( D ).A .2214y x += B .221(01)4y x x +=≤≤C .221(02)4y x y +=≤≤ D .221(01,02)4y x x y +=≤≤≤≤二、填空题 (每小题5分,共20分)13.在研究身高和体重的关系时,求得相关指数≈2R ____0.64__________,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。

高三数学月考试题及答案-2015届高三第一次诊断考试(理)

2015年甘肃省高考一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x﹣3>0},集合B=Z,则(∁R A)∩B=()A.{﹣3,﹣2,﹣1,0,1} B.{﹣1,0,1,2,3}C.{0,1,2} D.{﹣2,﹣1,0}【考点】交、并、补集的混合运算.【专题】集合.【分析】先求出不等式x2﹣2x﹣3>0的解集A,再由补集、交集的运算求出∁R A和(∁R A)∩B.【解析】解:由x2﹣2x﹣3>0得x<﹣1或x>3,则集合A={x|x<﹣1或x>3},所以∁R A={x|﹣1≤x≤3},又B=Z,则(∁R A)∩B={﹣1,0,1,2,3},故选:B.【点评】本题考查交、并、补集的混合运算,以及一元二次不等式的解法,属于基础题.2.(5分)设i是虚数单位,复数Z=1+为()A.1+i B.1﹣i C.C、﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解析】解:Z=1+=1+=1﹣i,故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.3.(5分)设a=dx,b=dx,c=dx,则下列关系式成立的是()A.a<b<c B.b<a<c C.a<c<b D.c<a<b【考点】定积分.【专题】导数的概念及应用.【分析】先分别根据定积分的计算法则求出a,b,c的值,再比较其大小.【解析】解:a=dx=lnx=ln2=ln,b=dx=lnx=ln,c=dx=lnx=ln,∵23<32,25>52,∴<,>∴<,>,∴>>,∵函数f(x)=lnx为增函数,∴c<a<b故选:D【点评】本题考查了的定积分的计算以及数的大小比较的方法,属于基础题.4.(5分)函数y=f(x)的图象向右平移个单位后与函数y=cos(2x﹣)的图象重合,则y=f(x)的解析式为()A.y=cos(2x﹣)B.y=cos(2x+)C.y=sin(2x+)D.y=sin(2x﹣)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解析】解:由题意可得,把函数y=cos(2x﹣)=sin2x的图象向左平移个单位后,可得函数y=f(x)=sin2(x+)=sin(2x+)的图象,故选:C.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,体现了转化的数学思想,属于基础题.5.(5分)数字“2015”中,各位数字相加和为8,称该数为“如意四位数”,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的“如意四位数”有()个.A.21 B.22 C.23 D.24【考点】计数原理的应用.【专题】应用题;排列组合.【分析】分类讨论,利用排列知识,即可得出结论.【解析】解:卡片上的四位数字之和等于8,四个数字为0,1,2,5;0,1,3,4.0,1,2,5组成的无重复数字且大于2015的“如意四位数”有,共1+2+2+=11个;0,1,3,4组成的无重复数字且大于2015的“如意四位数”有,共2=12个;故共23个.故选:C.【点评】本题考查计数原理的应用,考查分类讨论的数学思想,考查学生分析解决问题的能力,比较基础.6.(5分)某几何体的三视图如图所示,则该几何体的体积是()A.()π B.()π C.()π D.(π【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为圆柱与半个圆锥组成.【解析】解:该几何体为圆柱与半个圆锥组成,其中圆柱的体积为π×12×2=2π,半个圆锥的体积为××π×12×=π;故该几何体的体积是()π,故选C.【点评】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.7.(5分)阅读如图所示的程序框图,若输入的n=10,则该算法的功能是()A.计算数列{2n﹣1}的前11项和B.计算数列{2n﹣1}的前10项和C.计算数列{2n﹣1}的前11项和D.计算数列{2n﹣1}的前10项和【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,分析写出程序运行的每一步,便可得到程序框图表示的算法的功能,当i=11时,i>10成立,输出S=1+2+22+…+29+210,从而得解.【解析】解:框图首先给累加变量S和循环变量i赋值,S=0,i=0;执行S=1+2×0=1,i=0+1=1;判断i>10不成立,执行S=1+2×1=1+2,i=1+1=2;判断i>10不成立,执行S=1+2×(1+2)=1+2+22,i=2+1=3;…判断i>10不成立,执行S=1+2+22+…+29+210,i=10+1=11;判断i>10成立,输出S=1+2+22+…+29+210.算法结束.故则该算法的功能是计算数列{2n﹣1}的前11项和.故选:A.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律,属于基础题.8.(5分)若x,y满足约束条件,且向量=(3,2),=(x,y),则•的取值范围()A.[,5] B.[,5] C.[,4] D.[,4]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由数量积的定义计算出•=3x+2y,设z=3x+2y,作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解析】解:∵向量=(3,2),=(x,y),∴•=3x+2y,设z=3x+2y,作出不等式组对于的平面区域如图:由z=3x+2y,则y=,平移直线y=,由图象可知当直线y=,经过点B时,直线y=的截距最大,此时z最大,由,解得,即B(1,1),此时z max=3×1+2×1=5,经过点A时,直线y=的截距最小,此时z最小,由,解得,即A(,),此时z min=3×+2×=,则≤z≤5故选:A.【点评】本题主要考查线性规划以及向量数量积的应用,利用z的几何意义,利用数形结合是解决本题的关键.9.(5分)已知面积为S的凸四边形中,四条边长分别记为a1,a2,a3,a4,点P为四边形内任意一点,且点P到四边的距离分别记为h1,h2,h3,h4,若====k,则h1+2h2+3h3+4h4=类比以上性质,体积为y的三棱锥的每个面的面积分别记为S l,S2,S3,S4,此三棱锥内任一点Q到每个面的距离分别为H1,H2,H3,H4,若====K,则H1+2H2+3H3+4H4=()A.B.C.D.【考点】类比推理.【专题】计算题;推理和证明.【分析】由====k可得a i=ik,P是该四边形内任意一点,将P与四边形的四个定点连接,得四个小三角形,四个小三角形面积之和为四边形面积,即采用分割法求面积;同理对三棱值得体积可分割为5个已知底面积和高的小棱锥求体积.【解析】解:根据三棱锥的体积公式V=Sh,得:S1H1+S2H2+S3H3+S4H4=V即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=,故选B.【点评】本题主要考查三棱锥的体积计算和运用类比思想进行推理的能力.解题的关键是理解类比推理的意义,掌握类比推理的方法.平面几何的许多结论,可以通过类比的方法,得到立体几何中相应的结论.当然,类比得到的结论是否正确,则是需要通过证明才能加以肯定的.10.(5分)已知△ABC的三边长a,b,c成等差数列,且a2+b2+c2=84,则实数b的取值范围是()A.[2,2] B.(2,2] C.[2,2] D.(2,2]【考点】余弦定理.【专题】解三角形.【分析】由a,b,c成等差数列,设公差为d,则有a=b﹣d,c=b+d,代入已知等式求出b 的最大值;由三角形三边关系列出不等式,整理后求出b的范围,即可确定出满足题意b的范围.【解析】解:设公差为d,则有a=b﹣d,c=b+d,代入a2+b2+c2=84化简可得3b2+2d2=84,当d=0时,b有最大值为2,由三角形任意两边之和大于第三边,得到较小的两边之和大于最大边,即a+b>c,整理得:b>2d,∴3b2+2()2>84,解得:b>2,则实数b的取值范围是(2,2].故选:D.【点评】此题考查了余弦定理,等差数列的性质,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.11.(5分)在平面直角坐标系xOy中,以椭圆+=1(a>b>0)上的一点A为圆心的圆与x轴相切于椭圆的一个焦点,与y轴相交于B,C两点,若△ABC是锐角三角形,则该椭圆的离心率的取值范围是()A.(,)B.(,1)C.(,1)D.(0,)【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:A.根据△ABC是锐角三角形,可得∠BAD<45°,且1>,化为,解出即可.【解析】解:如图所示,设椭圆的右焦点F(c,0),代入椭圆的标准方程可得:,取y=,A.∵△ABC是锐角三角形,∴∠BAD<45°,∴1>,化为,解得.故选:A.【点评】本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、锐角三角形,考查了推理能力与计算能力,属于中档题.12.(5分)已知函数f(x)=xcos,存在f(x)的零点x0,(x0≠0),满足[f′(x0)]2<π2(λ2﹣x02),则λ的取值范围是()A.(﹣,0)∪(0,,)B.(﹣,0)∪(0,)C.(﹣∞,﹣)∪(,+∞)D.(﹣∞,﹣)∪(,+∞)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】关键题意得出=kπ,k∈z,x0=kλ+,k∈z,x02的最小值为,即sin=±1,运用最小值得出:(1+λ2)<λ4,求解即可.【解析】解:∵函数f(x)=xcos,∴f′(x)=cos﹣x sin,∵存在f(x)的零点x0,(x0≠0),∴=kπ,k∈z,x0=kλ+,k∈z,x02的最小值为即sin=±1,∴[f′(x0)]2<π2(λ2﹣x02),转化为:<π2(λ2﹣x02),(1+λ2)x<λ4,即只需满足:(1+λ2)<λ4,化简得:λ2,即λ>或.故选:D.【点评】本题综合考查了函数的零点,综合求解不等式,关键是确定x02的最小值为,代入得出转化的不等式,难度较大,属于难题.二、填空题:本大题共4小题,每小题5分.13.(5分)在的展开式中,常数项等于112(用数字作答)【考点】二项式定理.【专题】计算题.【分析】根据题意,可得其二项展开式的通项为T r+1,进而分析可得,8﹣=0时,有r=6,将r=6代入可得答案.【解析】解:根据题意,可得其二项展开式的通项为T r+1=C8r•(2x)8﹣r•(﹣)r=C8r•(﹣1)r•(2)8﹣r•,分析可得,8﹣=0时,有r=6,此时,T7=112,故答案为112.【点评】本题考查二项式定理,注意其展开式的通项公式的形式.14.(5分)直三棱柱ABC﹣A1B1C1的顶点在同一个球面上,AB=3,AC=4,AA1=2,∠BAC=90°,则球的表面积49π.【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】画出球的内接直三棱ABC﹣A1B1C1,求出球的半径,然后可求球的表面积.【解析】解:如图,由于∠BAC=90°,连接上下底面外心PQ,O为PQ的中点,OP⊥平面ABC,则球的半径为OB,由题意,AB=3,AC=4,∠BAC=90°,所以BC=5,因为AA1=2,所以OP=,所以OB==所以球的表面积为:4π×OB2=49π故答案为:49π.【点评】本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力理解失误能力,是基础题.15.(5分)下面给出的命题中:①m=﹣2”是直线(m+2)x+my+1=0与“直线(m﹣2)x+(m+2))y一3=0相互垂直”的必要不充分条件;②已知函数f(a)=sinxdx,则f[f()]=1﹣cos1;③已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0,4,则P(ξ>2)=0.2;④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y﹣1=0,则这两圆恰有2条公切线;⑤线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越小.其中是真命题的序号有②④.【考点】命题的真假判断与应用.【专题】综合题;高考数学专题.【分析】①由直线(m+2)x+my+1=0与直线(m﹣2)x+(m+2)y﹣3=0相互垂直,则(m+2)(m﹣2)+m(m+2)=0,从而有m=﹣2或m=1,可判断;②由定积分运算法则和函数值的求法,即可判断;③运用正态分布的特点,即曲线关于y轴对称,即可判断③;④根据圆与圆的位置关系进行判断;⑤线性相关系数|r|越大,两个变量的线性相关性越强.【解析】解:①,若m=﹣2,则直线﹣2y+1=0与直线﹣4x﹣3=0相互垂直;若直线(m+2)x+my+1=0与直线(m﹣2)x+(m+2)y﹣3=0相互垂直,则(m+2)(m﹣2)+m(m+2)=0,从而有m=﹣2或m=1,则应为充分不必要条件,则①错;②,函数f(a)=sinxdx=(﹣cosx)=1﹣cosa,则f[f()]=f(1)=1﹣cos1,则②对;③,ξ服从正态分布N(0,σ2),曲线关于y轴对称,由P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.5﹣0.4=0.1,则③错;④,∵⊙C1:x2+y2+2x=0,即(x+1)2+y2=1,表示圆心为(﹣1,0),半径等于1的圆.⊙C2:x2+y2+2y﹣1=0 即,x2+(y+1)2=2,表示圆心为(0,﹣1),半径等于的圆.两圆的圆心距等于,大于两圆的半径之差,小于两圆的半径之和,故两圆相交,故两圆的公切线由2条,则③正确.⑤,线性相关系数|r|越大,两个变量的线性相关性越强,故不正确.故答案为:②④.【点评】本题考查充分必要条件的判断和函数的定积分运算、正态分布曲线的特点、直线与圆的位置关系的判断,考查两个变量的线性相关,考查运算能力,属于中档题和易错题.16.(5分)设数列{a n}的前n项的和为S n,已知,设若对一切n∈N*均有,则实数m的取值范围为m<0或m≥5.【考点】数列的求和.【专题】计算题;等差数列与等比数列.【分析】依题意,可求得a n与b n,从而可求得b k=∈[,),利用[,)⊆(,m2﹣6m+)即可求得实数m的取值范围.【解析】解:∵++…+=,①∴当n≥2时,++…+=,②∴①﹣②得:=﹣=,∴S n=n(n+1)(n≥2).当n=1时,==,∴a1=2,符合S n=n(n+1)(n≥2).∴S n=n(n+1).∴可求得a n=2n.∴b n===.∵=,b1=,∴{b n}是以为首项,为公比的等比数列.∴b k==∈[,),∵b k∈(,m2﹣6m+),∴[,)⊆(,m2﹣6m+),即,解得:m<0或m≥5.故答案为:m<0或m≥5.【点评】本题考查求数列的通项与数列求和,突出考查集合间的包含关系与解不等式组的能力,综合性强,难度大,属于难题.三、解答题:本大题共5小题-共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)在△ABC中,角以,A,B,C对边分别为a,b,c,若bcosA+acosB=﹣2ccosC.(Ⅰ)求角C的大小;(Ⅱ)若a+b=6,且△ABC的面积为2,求边c的长.【考点】正弦定理;余弦定理.【专题】解三角形.【分析】(Ⅰ)由已知及正弦定理可得:sinBcosA+sinAcosB=﹣2sinCcosC,化简可得cosC=﹣,结合C的范围求C的值;(Ⅱ)由a+b=6得a2+b2+2ab=36,根据三角形的面积公式可求出ab的值,进而求出a2+b2的值,利用余弦定理求出c的值.【解析】解:(Ⅰ)由题意知,bcosA+acosB=﹣2ccosC,正弦定理可得sinBcosA+sinAcosB=﹣2sinCcosC,sin(A+B)=﹣2sinCcosC,由A,B,C是三角形内角可知,sin(A+B)=sinC≠0,∴cosC=,由0<C<π得,C=;(Ⅱ)∵a+b=6,∴a2+b2+2ab=36,∵△ABC的面积为2,∴,即,化简得,ab=8,则a2+b2=20,由余弦定理得,c2=a2+b2﹣2absinC=20﹣2×=28,所以c=.【点评】本题主要考察了正弦定理、余弦定理,三角形面积公式的应用,以及整体代换求值,注意角的范围确定,属于中档题.18.(12分)多面体ABCDE中,△ABC是边长为2的正三角形,AE>1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.(Ⅰ)若AE=2,求证:AC∥平面BDE;(Ⅱ)若二面角A一DE一B的余弦值为,求AE的长.【考点】二面角的平面角及求法;直线与平面平行的判定.【专题】空间位置关系与距离.【分析】(I)如图所示,分别取BC,BA,BE的中点M,N,P,连接MN,NP,DP.利用三角形中位线定理与平行四边形、线面垂直的判定与性质定理可得:DP∥MN,AC∥DP,即可证明AC∥平面BDE.(II)设AE=a,则E,设平面BDE的法向量为=(x,y,z),则,可得,取平面ADE的法向量=(1,0,0),利用==,解得a即可.【解析】(I)证明:如图所示,分别取BC,BA,BE的中点M,N,P,连接MN,NP,DP.则,NP∥AE,NP=AE=1.∵BD=CD,BD⊥CD,M为BC的中点,BC=2,∴DM⊥BC,DM=1,又平面BCD⊥平面ABC.∴DM⊥平面ABC,又AE⊥平面ABC,∴DM∥AE,∴四边形DMNP为平行四边形,∴DP∥MN,∴AC∥DP,又AC⊄平面BDE,DP⊂平面BDE,∴AC∥平面BDE.(II)解:设AE=a,则E,=(﹣1,0,1),=,设平面BDE的法向量为=(x,y,z),则,取=,取平面ADE的法向量=(1,0,0),则===,解得a=4,即AE=4.【点评】本题考查了三角形中位线定理与平行四边形的判定与性质、线面面面平行与垂直的判定与性质定理、二面角的计算公式,考查了空间想象能力、推理能力与计算能力,属于中档题.19.(12分)某市为了治理污染,改善空气质量,市环境保护局决定每天在城区主要路段洒水防尘,为了给洒水车供水,供水部门决定最多修建3处供水站.根据过去30个月的资料显示,每月洒水量X(单位:百立方米)与气温和降雨量有关,且每月的洒水量都在20以上,其中不足40的月份有10个月,不低于40且不超过60的月份有15个月,超过60的月份有5个月.将月洒水量在以上三段的频率作为相应的概率,并假设各月的洒水量相互独立.(Ⅰ)求未来的3个月中,至多有1个月的洒水量超过60的概率;(Ⅱ)供水部门希望修建的供水站尽可能运行,但每月供水站运行的数量受月洒水量限制,有如下关系:若某供水站运行,月利润为12000元;若某供水站不运行,月亏损6000元.欲使供水站的月总利润的均值最大,应修建几处供水站?【考点】离散型随机变量的期望与方差.【专题】应用题;概率与统计.【分析】(Ⅰ)分别考虑20<X<40,40≤X≤60,X>60,求出它们的概率,再由二项分布特点,即可得到所求概率;(Ⅱ)记供水部门的月总利润为Y元,分别考虑①修建一处供水站的情形,②修建两处供水站的情形,③修建三处供水站情形,求出概率计算期望,即可得到所求.【解析】解:(Ⅰ)依题意可得P1=P(20<X<40)==,P2=P(40≤X≤60)==,P3=P(X>60)==,由二项分布可得,在未来三个月中,至多有1个月的洒水虽超过60的概率为P=(1﹣P3)3+(1﹣P3)2•P3=()3+3×()2×=,至多有1个月的洒水虽超过60的概率为;(Ⅱ)记供水部门的月总利润为Y元,①修建一处供水站的情形,由于月洒水量总大于20,故一处供水站运行的概率为1,对应的月利润为Y=12000,E(Y)=12000×1=12000(元);②修建两处供水站的情形,依题意当20<X<40,一处供水站运行,此时Y=12000﹣6000=6000,P(Y=6000)=P(20<X<40)=P1=,当X≥40,两处供水站运行,此时Y=12000×2=24000,因此P(Y=24OOO)=P(X≥40)=P2+P3=,由此得Y的分布列为则E(Y)=6000×+24000×=18000(元);③修建三处供水站情形,依题意可得当20<X<40时,一处供水站运行,此时Y=12000﹣12000=0,由此P(Y=0)=P(40<X<80)=P1=,当40≤X≤60时,两处供水站运行,此时Y=12000×2﹣6000=18000,由此P(Y=18000)=P(40≤X≤60)=P2=,当X>60时,三处供水站运行,此时Y=12000×3=36000,由此P(Y=36000)=P(X>60)=P3=,由此的Y的分布列为由此E(Y)=0×+18000×+36000×=15000(元),欲使供水站的月总利润的均值最大,应修建两处供水站.【点评】本题考查离散型随机变量的期望的求法,同时考查二项分布的特点和概率计算,考查分析问题和解决问题的能力,属于中档题.20.(12分)已知中心在原点,焦点在x轴上的椭圆C的离心率为,其中一个顶点是抛物线x2=的焦点.(I)求椭圆C的标准方程;(Ⅱ)是否存在过点P(2,1)的直线l与椭圆C交于不同的两点A,B满足•,若存在,求出直线l的方程;若不存在,请说明埋由.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(I)设出椭圆方程,利用椭圆C的离心率为,其中一个顶点是抛物线x2=的焦点,求出几何量,即可得出椭圆的标准方程;(II)设出直线方程,代入椭圆方程,利用韦达定理,结合向量知识,即可求得结论.【解析】解:(I)设椭圆的标准方程为(a>b>0),则∵椭圆C的离心率为,其中一个顶点是抛物线x2=的焦点,∴∵c2=a2﹣b2∴a=2,c=1,∴椭圆的标准方程为;(II)若存在过点P(2,1)的直线l满足条件,则l的斜率存在设方程为y=k(x﹣2)+1,代入椭圆方程,可得(3+4k2)x2﹣8k(2k﹣1)x+16k2﹣16k﹣8=0 设A(x1,y1),B(x2,y2),则由△=32(6k+3)>0,可得且x1+x2=,x1x2=∵∴∴[x1x2﹣2(x1+x2)+4](1+k2)=∴[﹣2×+4](1+k2)=∴∵,∴∴存在过点P(2,1)的直线l与椭圆C交于不同的两点A,B满足•,其方程为.【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.21.(12分)已知函数f(x)=ax2+1n(x+1).(Ⅰ)当时a=﹣时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,函数y=f(x)的图象上的点都在所表示的平面区域内,求实数口的取值范围.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(Ⅰ)将a的值代入,求出函数f(x)的导数,解关于导函数的不等式,从而求出函数f(x)的单调区间;(Ⅱ)将问题转化为ax2+ln(x+1)≤x恒成立,设g(x)=ax2+ln(x+1)﹣x,(x≥0),只需g(x)max≤0即可,通过讨论a的范围,得到函数g(x)的单调性,从而求出a是范围.【解析】解:(Ⅰ)当a=﹣时,f(x)=﹣x2+ln(x+1),(x>﹣1),f′(x)=﹣x+=﹣,(x>﹣1),由f′(x)>0解得﹣1<x<1,由f′(x)<0解得:x>1,∴函数f(x)的单调递增区间是(﹣1,1),单调递减区间是(1,+∞);(Ⅱ)当x∈[0,+∞)时,函数y=f(x)的图象上的点都在所表示的平面区域内,即当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)≤x恒成立,设g(x)=ax2+ln(x+1)﹣x,(x≥0),只需g(x)max≤0即可,由g′(x)=2ax+﹣1=,(i)当a=0时,g′(x)=,当x>0时,g′(x)<0,函数g(x)在(0,+∞)单调递减,∴g(x)≤g(0)=0成立,(ii)当a>0时,由g′(x)==0,因x∈[0,+∞),∴x=﹣1,①若﹣1<0,即a>时,在区间(0,+∞)上,g′(x)>0,函数g(x)在(0,+∞)上单调递增,函数g(x)在[0,+∞)上无最大值,此时不满足;②若﹣1≥0,即0<a≤时,函数g(x)在(0,﹣1)上单调递减,在区间(﹣1,+∞)上单调递增,同样函数g(x)在[0,+∞)上无最大值,此时也不满足;(iii)当a<0时,由g′(x)=,∵x∈[0,+∞),∴2ax+(2a﹣1)<0,∴g′(x)<0,故函数g(x)在[0,+∞)单调递减,∴g(x)≤g(0)=0恒成立,综上:实数a的取值范围是(﹣∞,0].【点评】本题考查了导数的应用,考查了函数恒成立问题,考查分类讨论思想,本题有一定的难度.请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答题第一题评分;多答按所答第一题评分.选修4-3:几何证明选讲22.(10分)选修4﹣1:几何证明选讲如图,点C是⊙O直径BE的延长线上一点,AC是⊙O的切线,A为切点,∠ACB的平分线CD与AB相交于点D,与AE相交于点F,(Ⅰ)求∠ADF的值(Ⅱ)若AB=AC,求的值.【考点】与圆有关的比例线段.【专题】直线与圆.【分析】(Ⅰ)利用切线的性质和角平分线的性质可得∠ADF=∠AFD.再利用BE是⊙O 直径,可得∠BAE=90°.即可得到∠ADF=45°.(Ⅱ)利用等边对等角∠B=∠ACB=∠EAC.由(I)得∠BAE=90°,∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,即可得到∠B=30°.进而得到△ACE∽△BCA,于是=tan30°.【解析】解:(Ⅰ)∵AC是⊙O的切线,∴∠B=∠EAC.又∵DC是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,∴∠ADF=∠AFD.∵BE是⊙O直径,∴∠BAE=90°.∴∠ADF=45°.(Ⅱ)∵AB=AC,∴∠B=∠ACB=∠EAC.由(I)得∠BAE=90°,∴∠B+∠AEB=∠B+∠ACE+∠EAC=3∠B=90°,∴∠B=30°.∵∠B=∠EAC,∠ACB=∠ACB,∴△ACE∽△BCA,∴=tan30°=.【点评】熟练掌握圆的性质、切线的性质和角平分线的性质、弦切角定理、相似三角形的性质等是解题的关键.选修4-4:坐标系与参数方程23.在直角坐标系xoy中,直线l的参数方程为(t 为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ.(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的倍,求a的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【专题】坐标系和参数方程.【分析】(Ⅰ)直接把极坐标方程和参数方程转化成直角坐标方程.(Ⅱ)利用点到直线的距离公式,建立方程求出a的值.【解析】解:(Ⅰ)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0(Ⅱ)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.【点评】本题考查的知识要点:极坐标方程和参数方程与直角坐标方程的互化,点到直线的距离公式的应用.选修4-5:不等式选讲24.已知函数f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.(Ⅰ)求m的取值范围;(Ⅱ)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣8.【考点】绝对值不等式的解法.【专题】不等式的解法及应用;不等式.【分析】对第(1)问,由m≤f(x)恒成立知,m≤f(x)min,只需求得f(x)的最小值即可.对第(2)问,先将m的值代入原不等式中,再变形为|x﹣3|≤4+2x,利用“|g(x)|≤h(x)⇔﹣h(x)≤g(x)≤h(x)”,可得其解集.【解析】解:(Ⅰ)要使f(x)≥m恒成立,只需m≤f(x)min.由绝对值不等式的性质,有|2x﹣1|+|2x+5|≥|(2x﹣1)+(2x+5)|=6,即f(x)min=6,所以m≤6.(Ⅱ)由(Ⅰ)知,m=6,所以原不等式化为|x﹣3|﹣2x≤4,即|x﹣3|≤4+2x,得﹣4﹣2x≤x﹣3≤4+2x,转化为,化简,得,所以原不等式的解集为.【点评】本题属不等式恒成立问题,较为基础,主要考查了含绝对值不等式的解法,利用绝对值不等式的性质求最值等,求解此类问题时,应掌握以下几点:1.若m≤f(x)恒成立,只需m≤[f(x)]min;若m≥f(x)恒成立,只需m≥[f(x)]max.2.|g(x)|≤h(x)⇔﹣h(x)≤g(x)≤h(x),|g(x)|≥h(x)⇔g(x)≥h(x),或g(x)≤﹣h(x).。

河北省石家庄市行唐县启明中学2015届高三上学期1月月考数学试卷(理科) Word版含解析

河北省石家庄市行唐县启明中学2015届高三上学期1月月考数学试卷(理科) 一、选择题:每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,B={y|y=x2},则A∩B=( ) A.[﹣2,2] B.[0,2] C.[0,+∞)D.{(﹣1,1),(1,1)} 考点:交集及其运算. 分析:先化简集合A和B,然后由交集的定义求得结果. 解答:解:∵集合={x|﹣2≤x≤2} B={y|y=x2}={x|x≥0} ∴A∩B={x|0≤x≤2} 故选:B. 点评:此题以圆锥曲线的性质为平台,考查集合的交集定义,属于中档题. 2.已知定义在复数集C上的函数f(x)满足f(x)=,则f(1+i)等于( ) A.﹣2 B.0 C.2 D.2+i 考点:复数代数形式的乘除运算. 专题:计算题. 分析:根据条件中所给的是一个分段函数,首先判断要求的函数的自变量是一个实数还是不是实数,确定不是实数,代入函数式,写出两个复数相乘的结果. 解答:解:∵1+i?R, ∴f(1+i)=(1﹣i)(1+i)=1﹣i2=2, 故选:C. 点评:本题考查复数的代数形式的乘法运算,考查分段函数的应用,考查判断一个数字是否是实数,本题是一个基础题,一般不会出错. 3.已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,则p的值为( ) A.B.1 C.2 D.4 考点:抛物线的简单性质. 专题:计算题;压轴题. 分析:根据抛物线的标准方程可知准线方程为,根据抛物线的准线与圆相切可知求得p. 解答:解:抛物线y2=2px(p>0)的准线方程为, 因为抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切, 所以; 故选C. 点评:本题考查抛物线的相关几何性质及直线与圆的位置关系. 4.函数f(x)=sin2x﹣4sin3xcosx(x∈R)的最小正周期为( ) A.B.π4 C.π8 D.π 考点:三角函数的周期性及其求法. 专题:三角函数的图像与性质. 分析:把函数f(x)的解析式利用二倍角公式变形后,化为一个角的正弦函数,找出ω的值,代入周期公式中,求出函数的周期. 解答:解:函数f(x)=sin2x﹣4sin3xcosx=sin2x(1﹣2sin2x)=sin2x?cos2x=sin4x, 故函数的最小正周期为=, 故选:A. 点评:此题考查了二倍角的正弦余弦函数公式,以及三角函数的周期性及其求法,利用三角函数的恒等变形把函数解析式化为一个角的三角函数值是求函数周期的关键,属于基础题. 5.如果执行程序框图,那么输出的S=( ) A.2450 B.2500 C.2550 D.2652 考点:设计程序框图解决实际问题. 分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值. 解答:解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值. ∵S=2×1+2×2+…+2×50=2××50=2550 故选C 点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)?②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模. 6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),那么可得这个几何体的体积是( ) A.cm3 B.cm3 C.cm3 D.cm3 考点:由三视图求面积、体积. 专题:计算题. 分析:由三视图判断几何体为三棱锥,求出三棱锥的高与底面面积,代入棱锥的体积公式计算.. 解答:解:由三视图判断几何体为三棱锥,且三棱锥的高为2,底面三角形底边长和高都为2. ∴棱锥的体积V=××2×2×2=(cm). 故选C. 点评:本题考查由三视图求几何体的体积,解题的关键是判断几何体的形状及相关数据所对应的几何量. 7.下列关于公差d>0的等差数列{an}的四个命题: p1:数列{an}是递增数列; p2:数列{nan}是递增数列; p3:数列是递增数列; p4:数列{an+3nd}是递增数列; 其中真命题是( ) A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p4 考点:等差数列的性质;命题的真假判断与应用. 专题:等差数列与等比数列. 分析:对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论. 解答:解:∵对于公差d>0的等差数列{an},an+1﹣an=d>0,∴命题p1:数列{an}是递增数列成立,是真命题. 对于数列数列{nan},第n+1项与第n项的差等于(n+1)an+1﹣nan=(n+1)d+an,不一定是正实数, 故p2不正确,是假命题. 对于数列,第n+1项与第n项的差等于﹣==,不一定是正实数, 故p3不正确,是假命题. 对于数列数列{an+3nd},第n+1项与第n项的差等于 an+1+3(n+1)d﹣an﹣3nd=4d>0, 故命题p4:数列{an+3nd}是递增数列成立,是真命题. 故选D. 点评:本题主要考查等差数列的定义,增数列的含义,命题的真假的判断,属于中档题. 8.已知正四棱锥的侧棱与底面的边长都为,则这个四棱锥的外接球的表面积为( ) A.12πB.36πC.72πD.108π 考点:球的体积和表面积;球内接多面体. 专题:计算题. 分析:先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理解出球的半径,最后根据球的表面积公式解之即可. 解答:解:如图,设正四棱锥底面的中心为O,则 在直角三角形ABC中,AC=×AB=6,∴AO=CO=3, 在直角三角形PAO中,PO==3, ∴正四棱锥的各个顶点到它的底面的中心的距离都为3, ∴正四棱锥外接球的球心在它的底面的中心,且球半径r=3, 球的表面积S=4πr2=36π 故选B. 点评:本题主要考查球的表面积,球的内接体问题,考查计算能力和空间想象能力,属于中档题. 9.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若,则k的取值范围是( ) A.B.C.D. 考点:直线与圆相交的性质. 专题:计算题;直线与圆. 分析:根据,由弦长公式得,圆心到直线的距离小于或等于1,从而可得不等式,即可求得结论. 解答:解:∵ ∴由弦长公式得,圆心到直线的距离小于或等于1, ∴≤1, ∴8k(k+)≤0, ∴﹣≤k≤0, 故选D. 点评:本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,属于基础题. 10.设an=sin,Sn=a1+a2+…+an,在S1,S2,…S100中,正数的个数是( ) A.25 B.50 C.75 D.100 考点:数列的求和;三角函数的周期性及其求法. 专题:计算题;压轴题. 分析:由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断 解答:解:由于f(n)=sin的周期T=50 由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0 且sin,sin…但是f(n)=单调递减 a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24 ∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正 同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正, 故选D 点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用. 11.若函数的图象如图所示,则a:b:c:d=( ) A.1:6:5:8 B.1:6:5:(﹣8)C.1:(﹣6):5:8 D.1:(﹣6):5:(﹣8) 考点:函数的图象. 专题:函数的性质及应用. 分析:根据图象可先判断出分母的分解析,然后利用特殊点再求出分子即可. 解答:解:由图象可知,x≠1,5, ∴分母必定可以分解为k(x﹣1)(x﹣5), ∵在x=3时有y=2, ∴d=﹣8k, ∴a:b:c:d=1:(﹣6):5:(﹣8). 故选:D. 点评:本题主要考查了利用图象信息推导所给函数的系数和常数部分,属于中档题. 12.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=ax?g(x)(a>0,且a≠1),,若数列的前n项和大于62,则n的最小值为( ) A.6 B.7 C.8 D.9 考点:简单复合函数的导数;数列的函数特性. 专题:计算题;压轴题. 分析:由f′(x)g(x)>f(x)g′(x)可得单调递增,从而可得a>1,结合,可求a.利用等比数列的求和公式可求,从而可求 解答:解:∵f′(x)g(x)>f(x)g′(x), ∴f′(x)g(x)﹣f(x)g′(x)>0, ∴, 从而可得单调递增,从而可得a>1, ∵, ∴a=2. 故=2+22+…+2n=. ∴2n+1>64,即n+1>6,n>5,n∈N*. ∴n=6. 故选:A. 点评:本题主要考查了利用导数的符合判断指数函数的单调性,等比数列的求和公式的求解,解题的关键是根据已知构造函数单调递增. 二、填空题:本大题共4小题,每小题5分. 13.已知函数f(x)=x+ex,g(x)=x+lnx,h(x)=﹣1+lnx的零点依次为a,b,c则a,b,c从大到小的顺序为c>b>a. 考点:对数值大小的比较. 专题:函数的性质及应用. 分析:利用函数性质和零点定义求解. 解答:解:∵ex恒大于0,∴f(x)=x+ex的零点a<0; 由g(x)=x+lnx=0,得x=, ∴由g(x)=x+lnx的零点b∈(0,1); 由h(x)=﹣1+lnx=0,得x=e, ∴h(x)=﹣1+lnx的零点c=e, ∴c>b>a. 故答案为:c>b>a. 点评:本题考查三个数的大小的比较,是基础题,解题时注意注意函数的零点的灵活运用. 14.已知椭圆+=1(a1>0,b1>0)的长轴长、短轴长、焦距长成等比数列,离心率为e1;双曲线﹣=1(a2>0,b2>0)的实轴长、虚轴长、焦距长也成等比数列,离心率为e2.则e1e2=1. 考点:椭圆的简单性质. 专题:计算题;圆锥曲线的定义、性质与方程. 分析:设出椭圆的焦距、短轴长、长轴长,通过等比数列建立b12=a1?c1,求出椭圆的离心率;根据双曲线实轴的长度、虚轴的长度和焦距成等比数列,b22=a2c2,从而可求双曲线的离心率,即可得出结论. 解答:解:设出椭圆的焦距、短轴长、长轴长分别为2c1,2b1,2a1, ∵椭圆的长轴长、短轴长、焦距长成等比数列, ∴2a1,2b1,2c1成等比数列, ∴4b12=2a1?2c1,∴b12=a1?c1, ∴b12=a12﹣c12=a1?c1, 两边同除以a12得:e12+e1﹣1=0, 解得,e1=, 双曲线实轴的长度、虚轴的长度和焦距成等比数列, ∴b22=a2c2, ∴c22﹣a22=a2c2, ∴e22﹣e2﹣1=0, ∵e2>1, ∴e2=, ∴e1e2=1 故答案为:1. 点评:本题考查椭圆、双曲线的离心率,等比数列性质的应用,考查计算能力,属于中档题. 15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是①③④⑤(写出所有正确结论的编号). ①矩形; ②不是矩形的平行四边形; ③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体. 考点:棱柱的结构特征. 专题:综合题. 分析:先画出图形,再在底面为正方形的长方体上选择适当的4个顶点,观察它们构成的几何形体的特征,从而对五个选项一一进行判断,对于正确的说法只须找出一个即可. 解答:解:如图:①正确,如图四边形A1D1BC为矩形 ②错误任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1D1BC为矩形; ③正确,如四面体A1ABD; ④正确,如四面体A1C1BD; ⑤正确,如四面体B1ABD; 则正确的说法是①③④⑤. 故答案为①③④⑤ 点评:本题主要考查了点、线、面间位置特征的判断,棱柱的结构特征,能力方面考查空间想象能力和推理论证能力,属于基础题.找出满足条件的几何图形是解答本题的关键. 16.在直角坐标平面xoy中,过定点(0,1)的直线L与圆x2+y2=4交于A、B两点,若动点P(x,y)满足,则点P的轨迹方程为x2+(y﹣1)2=1. 考点:轨迹方程. 专题:综合题;直线与圆. 分析:利用向量求得坐标之间的关系,设过定点(0,1)的直线L:y=kx+1,代入x2+y2=4,可得x=﹣,y=,即可得出结论. 解答:解:设动点P(x,y)及圆上点A(a,b),B(m,n),则 ∵, ∴(a+m,b+n)=(x,y), 设过定点(0,1)的直线L:y=kx+1, 代入x2+y2=4,可得(1+k2)x2+2kx﹣3=0, ∴a+m=﹣, ∴b+n=∴x=﹣,y=, ∴x2+(y﹣1)2=1. 故答案为:x2+(y﹣1)2=1. 点评:本题考查轨迹方程,解题的关键是确定动点坐标之间的关系,利用消参法求轨迹方程. 三、解答题:本大题共6小题,共计70分.解答应写出文字说明.证明过程或演算步骤 17.在△ABC中,a,b,c分别是角A、B、C的对边,=(b,2a﹣c),=(cosB,cosC),且∥ (1)求角B的大小; (2)设f(x)=cos(ωx﹣)+sinωx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,]上的最大值和最小值. 考点:平行向量与共线向量;三角函数的周期性及其求法;正弦定理;三角函数的最值. 专题:三角函数的图像与性质;平面向量及应用. 分析:(1)要求B角的大小,要先确定B的一个三角函数值,再确定B的取值范围 (2)要求三角函数的最值,要先将其转化为正弦型函数的形式,再根据正弦型函数的性质解答. 解答:解:(1)由m∥n,得bcosC=(2a﹣c)cosB, ∴bcosC+ccosB=2acosB. 由正弦定理,得sinBcosC+sinCcosB=2sinAcosB, ∴sin(B+C)=2sinAcosB. 又B+C=π﹣A, ∴sinA=2sinAcosB. 又sinA≠0,∴. 又B∈(0,π),∴. (2) 由已知,∴ω=2. 当 因此,当时,; 当, 点评:①能够转化为y=Asin(ωx+φ)+B型的函数,求值域(或最值)时注意A的正负号;②能够化为y=asin2x+bsinx+c或y=acos2x+bcosx+c型或可化为此型的函数求值,一般转化为二次函数在给定区间上的值域问题. 18.已知数列{an}的首项a1=,an+1=,n=1,2,…. (Ⅰ)证明:数列{﹣1}是等比数列; (Ⅱ)求数列{}的前n项和. 考点:数列递推式;等比关系的确定;数列的求和. 专题:计算题;压轴题. 分析:(1)化简构造新的数列,进而证明数列是等比数列. (2)根据(1)求出数列的递推公式,得出an,进而构造数列,求出数列的通项公式,进而求出前n项和Sn. 解答:解:(Ⅰ)由已知:, ∴, ∴, 又,∴, ∴数列是以为首项,为公比的等比数列. (Ⅱ)由(Ⅰ)知, 即,∴. 设,① 则,② 由①﹣②得:, ∴.又1+2+3+…. ∴数列的前n项和:. 点评:此题主要考查通过构造新数列达到求解数列的通项公式和前n项和的方法. 19.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选. (Ⅰ)求乙得分的分布列和数学期望; (Ⅱ)求甲、乙两人中至少有一人入选的概率. 考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列. 专题:计算题. 分析:(Ⅰ)确定乙答题所得分数的可能取值,求出相应的概率,即可得到乙得分的分布列和数学期望; (Ⅱ)由已知甲、乙至少答对2题才能入选,求出甲、乙入选的概率,利用对立事件,即可求得结论. 解答:解:(Ⅰ)设乙答题所得分数为X,则X的可能取值为﹣15,0,15,30. ;;;. … 乙得分的分布列如下: X ﹣15 0 15 30 P . … (Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A,乙入选为事件B. 则,… . … 故甲乙两人至少有一人入选的概率. … 点评:本题考查概率的计算,考查互斥事件的概率,考查离散型随机变量的分布列与期望,确定变量的取值,计算其概率是关键. 20.如图,三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点. (1)求证:平面A1BD⊥平面A1ACC1; (2)求直线AB1与平面A1BD所成的角的正弦值. 考点:平面与平面垂直的判定;直线与平面所成的角. 专题:空间位置关系与距离. 分析:(1)由已知条件得AA1⊥底面ABC,BD⊥平面A1ACC1,由此能证明平面A1BD⊥平面A1ACC1. (2)作AM⊥A1D,设AB1与A1B相交于点P,连接MP,则∠APM就是直线A1B与平面A1BD 所成的角,由此能求出直线AB1与平面A1BD所成的角的正弦值. 解答:(1)证明:∵正三棱住ABC﹣A1B1C1,∴AA1⊥底面ABC, 又∵BD⊥AC,A1A∩AC=A,∴BD⊥平面A1ACC1, 又∵BD?平面A1BD, ∴平面A1BD⊥平面A1ACC1…6分 (2)解:作AM⊥A1D,M为垂足, 由(1)知AM⊥平面A1DB,设AB1与A1B相交于点P, 连接MP,则∠APM就是直线A1B与平面A1BD所成的角,…9分 ∵AA1=,AD=1,∴在Rt△AA1D中, ∠A1DA=,∴AM=1×sin60°=,AP==, ∴sin∠APM===. 直线AB1与平面A1BD所成的角的正弦值为.…12分. 点评:本题考查平面与平面垂直的证明,考查直线性与平面所成角的正弦值的求法,解题时要认真审题,注意空间思维能力的培养. 21.已知函数f (x)=ax﹣ex(a∈R),g(x)=. (I)求函数f (x)的单调区间; (Ⅱ)?x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围. 考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值. 专题:导数的综合应用. 分析:(Ⅰ)f′(x)=a﹣ex,x∈R.对a分类讨论,利用导数研究函数的单调性即可得出; (Ⅱ)由?x0∈(0,+∞),使不等式f(x)≤g(x)﹣ex,即a≤.设h(x)=,则问题转化为a,利用导数研究函数的单调性极值与最值即可得出. 解答:解:(Ⅰ)∵f′(x)=a﹣ex,x∈R. 当a≤0时,f′(x)<0,f(x)在R上单调递减; 当a>0时,令f′(x)=0得x=lna. 由f′(x)>0得f(x)的单调递增区间为(﹣∞,lna); 由f′(x)<0得f(x)的单调递减区间为(lna,+∞). (Ⅱ)∵?x0∈(0,+∞),使不等式f(x)≤g(x)﹣ex,则,即a≤. 设h(x)=,则问题转化为a, 由h′(x)=,令h′(x)=0,则x=. 当x在区间(0,+∞)内变化时,h′(x)、h(x)变化情况如下表: x h′(x)+ 0 ﹣ h(x)单调递增极大值单调递减 由上表可知,当x=时,函数h(x)有极大值,即最大值为. ∴. 点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力与计算能力,属于难题. 22.已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行. (Ⅰ)求k的值; (Ⅱ)求f(x)的单调区间; (Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2. 考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程. 专题:导数的综合应用. 分析:(Ⅰ)先求出f′(x)=,x∈(0,+∞),由y=f(x)在(1,f(1))处的切线与x 轴平行,得f′(1)=0,从而求出k=1; (Ⅱ)由(Ⅰ)得:f′(x)=(1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x ∈(0,+∞),求出h(x)的导数,从而得f(x)在(0,1)递增,在(1,+∞)递减; (Ⅲ)因g(x)=(1﹣x﹣xlnx),x∈(0,+∞),由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞),得1﹣x﹣xlnx≤1+e﹣2,设m(x)=ex﹣(x+1),得m(x)>m(0)=0,进而1﹣x﹣xlnx ≤1+e﹣2<(1+e﹣2),问题得以证明. 解答:解:(Ⅰ)∵f′(x)=,x∈(0,+∞), 且y=f(x)在(1,f(1))处的切线与x轴平行, ∴f′(1)=0, ∴k=1; (Ⅱ)由(Ⅰ)得:f′(x)=(1﹣x﹣xlnx),x∈(0,+∞), 令h(x)=1﹣x﹣xlnx,x∈(0,+∞), 当x∈(0,1)时,h(x)>0,当x∈(1,+∞)时,h(x)<0, 又ex>0, ∴x∈(0,1)时,f′(x)>0, x∈(1,+∞)时,f′x)<0, ∴f(x)在(0,1)递增,在(1,+∞)递减; 证明:(Ⅲ)∵g(x)=(x2+x)f′(x), ∴g(x)=(1﹣x﹣xlnx),x∈(0,+∞), ∴?x>0,g(x)<1+e﹣2?1﹣x﹣xlnx<(1+e﹣2), 由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞), ∴h′(x)=﹣(lnx﹣lne﹣2),x∈(0,+∞), ∴x∈(0,e﹣2)时,h′(x)>0,h(x)递增, x∈(e﹣2,+∞)时,h(x)<0,h(x)递减, ∴h(x)max=h(e﹣2)=1+e﹣2, ∴1﹣x﹣xlnx≤1+e﹣2, 设m(x)=ex﹣(x+1), ∴m′(x)=ex﹣1=ex﹣e0, ∴x∈(0,+∞)时,m′(x)>0,m(x)递增, ∴m(x)>m(0)=0, ∴x∈(0,+∞)时,m(x)>0, 即>1, ∴1﹣x﹣xlnx≤1+e﹣2<(1+e﹣2), ∴?x>0,g(x)<1+e﹣2. 点评:本题考查了函数的单调性,函数的最值问题,考查导数的应用,切线的方程,是一道综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y f ( x) 的“拐点”。某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次
函数都有对称中心,且 “ 拐点 ” 就是对称中心。设函数 g( x)
1 3 1 2 5 x x 3x ,则 3 2 12
1 2 2012 g g ... g =( 2013 2013 2013
则 ab 的最大值为 。
三、解答题:(本大题共 6 小题,共 80 分,解答应写出文字说明,证明过程,或演算步骤) 15、(本题满分 12 分) 已知函数 f ( x) 2sin( x (Ⅰ)求 f (
5 ) 的值; 4
1 3

6
), x R.
(Ⅱ)设 , 0,
10 6 , f (3 ) , f (3 2 ) , 求 cos( ) 的值. 2 13 5 2
1 x
B. y x 1
C. y ( )
1 2
x
D. y log 2 x
5 1 m n , a p , b p ,且 m n ,则 a, b 大小关系为( 2
b
) D. 无法判断大小 D、
)
ab A. a b B. C. 6、若 a b 0 , c d 0 ,则一定有(
C.0,2

2、在复平面内表示复数 i (1 2i ) 的点位于(
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
1 3、设 x∈R,则“x> ”是“2x2+x-1>0”的 2 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4、下列函数中,在区间 (0, ) 上为增函数的是( ) A. y x 5、若 p
2015 届高三上学期第一次月考 数学(理科)
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每小题只有一项是符合题目要求的. 1、设集合 A 2, 0, 2, 4 , B x | x 2 x 3 0 ,,则 A
2


B (
D.0,2,4

A.0
B.2
4 x 2 2, 1 x 0 4 f ( x) ,则 f [ f ( )] =____________。 3 0 x 1 2 x,
C (4,5) 为坐标平面上的三点, b 0 ,A(a,1) ,B(2, b) , 14、 已知实数 a 0 , 若 AC BC ,
17、(本题满分 14 分) 已 知 命 题 p : 函 数 f ( x) (a
3 x )是 R 上 的 减 函 数 , 命 题 q: 关 于 x 的 方 程 2
x 2 ax 1 0 有实数根.若命题 p q 为假命题, p q 为真命题,求实数 a 的取值范
围.
3/9
18、(本题满分 14 分)
19、(本题满分 14 分) 已知正项数列 {x n } 满足 x n
1/9
)
A. 2011
B. 2012
C. 2013
D. 2014
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 9、命题 p : x R , x x 1 0 的否定是
3 2
10、计算 0.25
2
1 8 16
2
2 3

3 4
lg 25 2 lg 2 _________
2 2
8、 对于三次函数 f ( x) ax bx cx d (a 0) , 给出定义: 设 f '( x) 是函数 y f ( x) 的 导数, f ( x) 是 f '( x) 的导数,若方程 f ''( x) 0 有实数解 x0 ,则称点 ( x0 , f ( x0 )) 为函数
A、
a b c d
B、
a b c d
C、
a b d c
a b d c

7、已知偶函数 y f ( x) 在区间 (, 0] 上是增函数,下列不等式一定成立的是( A. f (3) f (2) C. f (1) f (a 2a 3)
2
3 2
B. f ( ) f (3) D. f (a 2) f (a 1)
其中 k 为常数 已知函数 f ( x) kx (3 k ) x 3, , (k R)
2
(1)若函数 f ( x ) 满足 f (2) 3 , ①求函数 f ( x ) 在 [1, 4] 上的最大值和最小值; ②若 f ( x) mx 7 对任意 x R 上恒成立,求实数 m 的取值范围; (2)当 k 0 时,讨论函数 f ( x ) 在区间 [1, 4] 上的单调性。
2/9
16、(本题满分 12 分) 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽 出取 14 件和 5 件,测量产品中的微量元素 x, y 的含量(单位:毫克).下表是乙厂的 5 件产 品的测量数据: 1 2 3 4 5 编号 x 169 178 166 175 180 y 75 80 77 70 81 (Ⅰ)已知甲厂生产的产品共有 98 件,求乙厂生产的产品数量; (Ⅱ)当产品中的微量元素 x , y 满足 x≥175,且 y≥75 时,该产品为优等品。用上述样本 数据估计乙厂生产的优等品的数量; (Ⅲ)从乙厂抽出的上述 5 件产品中,随机抽取 2 件,求抽取的 2 件产品中优等品数 的分布列及其均值(即数学期望).
11、函数 f ( x) ln( x x) 的定义域为
x y 1, 12、设变量 x ,y 满足约束条件 x y 4,则目标函数 z 2 x 4 y 的最大值为________ y 2
13、设 f ( x ) 是定义在 R 上的周期为 2 的函数,当 x [1,1) 时,
相关文档
最新文档