八年级数学下册18平行四边形18.1平行四边形的性质18.1.2平行四边形的性质教案新版华东师大
18-1-2 平行四边形的性质定理课件2022-2023学年华东师大版八年级数学下册

F
A
B
∴∠FDO=∠EBO
又∵∠DOF=∠EOB
∴△DFO≌△BEO.
∴BE∥DF
∴OE=OF
3. 如图,在▱ABCD中,EF过对角线的交点O,且与边AB、CD分别相交 于点E、F,AB=4,AD=3,OF=1.3.求四边形BCFE的周长.
解:在▱ABCD中 易证得:△BEO≌△DFO ∴OE=OF,EB=DF, ∴lEB+lBC+lCF=lBC+lCD=4+3=7
B
C
因为对角线互相平分,所以有AO=CO,
OD=BO.
2.如图,在▱ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC
,垂足分别为点E、F.求证:OE=OF. 分析:要证明OE=OF,只要证明它们所在
D
C
OE
的两个三角形全等即可.
证明:在▱ABCD中 有OB=OD(平行四边形的对角线互相平分) ∵BE⊥AC,DF⊥AC
课堂小结
性质定理3 平行四边形的对角线互相平分
平行四边形 性质
根据平行四边形性质求面积与周长
∴AB+OA+OB+2=BC+OB+OC,
∴2(AB+BC)=16
即AB+2=BC
即4AB+4=16
又∵▱ABCD的周长等于16
∴AB=3,BC=5
例4 如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为点E, 且BE=5cm,AD=7cm.求AD和BC之间的距离.
解:设AD,和BC之间的距离为x,则▱ABCD的
A
D
O
∴ AO +BO=15-6=9
B
人教初中数学八下 18.1.1 平行四边形的性质教案2 【经典教学设计合编】

平行四边形性质课标解读与教材分析【课标要求】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.教学内容分析:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等、对角线互相平分的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.教学目标知识与技能1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.过程与方法培养学生发现问题、解决问题的能力及逻辑推理能力.情感态度价值观1、培养学生观察、分析、猜想、归纳知识的自学能力.2、使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.3、初步达到演绎数学论证过程的能力.教学重点与难点重点平行四边形的定义,平行四边形对角、对边相等、对角线互相平分的性质,以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.媒体教具三角板课时1课时教学过程修改栏教学内容师生互动配套练习P23-251、典型例题讲析2、基础演练运用平行四边形的性质进行有关的论证和计算.板书设计作业布置教学反思平行四边形的判定——三角形的中位线课标解读与教材分析【课标要求】1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.教学内容分析:一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?二、定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)三、例题分析例1如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC .(也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE到F ,使EF=DE ,连接CF 、CD和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形. 分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.∵ AH=HD ,CG=GD , ∴ HG ∥A C ,HG=21AC (三角形中位线性质). 同理EF ∥AC ,EF=21AC .∴ HG ∥EF ,且HG=EF . ∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.板 书设 计作业布置教 学反 思18.1.1 平行四边形的性质一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:18.1.1 平行四边形的性质三、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.四、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:。
人教版数学八年级下册18.1.2第1课时《平行四边形的判定(1)》说课稿

人教版数学八年级下册18.1.2第1课时《平行四边形的判定(1)》说课稿一. 教材分析人教版数学八年级下册18.1.2第1课时《平行四边形的判定(1)》是本节课的主要内容。
本节课主要让学生了解平行四边形的判定方法,掌握平行四边形的性质,并能够运用这些性质解决实际问题。
教材通过引入平行四边形的定义和判定方法,引导学生探究平行四边形的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了四边形的性质和判定方法,具备了一定的几何知识基础。
然而,对于平行四边形的性质和判定方法,学生可能还存在一些模糊的认识,需要通过本节课的学习来进行进一步的引导和巩固。
此外,学生对于实际问题的解决能力还需要进一步提高。
三. 说教学目标1.知识与技能目标:使学生了解平行四边形的判定方法,掌握平行四边形的性质,并能够运用这些性质解决实际问题。
2.过程与方法目标:通过观察、推理和探究,培养学生的观察能力、推理能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:平行四边形的判定方法,平行四边形的性质。
2.教学难点:平行四边形的判定方法的运用,实际问题的解决。
五. 说教学方法与手段本节课采用问题驱动法和合作学习法进行教学。
通过引导学生观察、推理和探究,激发学生的学习兴趣,培养学生的观察能力、推理能力和解决问题的能力。
此外,利用多媒体教学手段,展示平行四边形的图形和性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些平行四边形的图形,引导学生回顾四边形的性质和判定方法,为新课的学习做好铺垫。
2.探究平行四边形的判定方法:引导学生观察和推理,得出平行四边形的判定方法。
3.学习平行四边形的性质:引导学生观察和推理,得出平行四边形的性质。
4.运用平行四边形的性质解决实际问题:给出一些实际问题,引导学生运用所学的知识进行解决。
人教版数学八年级下册18.1《平行四边形》教学设计

人教版数学八年级下册18.1《平行四边形》教学设计一. 教材分析人教版数学八年级下册18.1《平行四边形》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节课主要介绍了平行四边形的定义、性质及其判定方法。
教材通过丰富的例题和练习题,使学生能够理解和掌握平行四边形的性质,并能够运用平行四边形的知识解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念和性质,具备了一定的逻辑思维和推理能力。
但部分学生对几何图形的理解和操作能力较弱,对平行四边形的判定方法和解题策略还不够熟悉。
因此,在教学过程中,教师需要关注这部分学生的学习情况,通过引导和激励,提高他们的学习兴趣和自信心。
三. 教学目标1.理解平行四边形的定义和性质;2.学会用平行四边形的性质解决实际问题;3.培养学生的逻辑思维和推理能力;4.提高学生的合作意识和沟通能力。
四. 教学重难点1.平行四边形的定义和性质;2.平行四边形的判定方法;3.运用平行四边形的知识解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣;2.启发式教学法:引导学生发现平行四边形的性质和判定方法,培养学生的逻辑思维和推理能力;3.合作学习法:分组讨论和解答问题,提高学生的合作意识和沟通能力;4.巩固练习法:通过适量练习,使学生掌握平行四边形的知识,并能够运用到实际问题中。
六. 教学准备1.教学PPT:制作精美的PPT,展示平行四边形的定义、性质和判定方法;2.练习题:准备适量的练习题,用于巩固学生的学习效果;3.教学工具:准备直尺、三角板等教学工具,方便学生直观地理解平行四边形的性质。
七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如教室的黑板、篮球场的篮板等,引导学生观察这些实例中的图形,并提出问题:“这些图形有什么共同的特点?”让学生思考和讨论,从而引出平行四边形的概念。
2.呈现(10分钟)教师通过PPT展示平行四边形的定义、性质和判定方法,让学生初步了解和认识平行四边形。
18.1平行四边形的性质(教案)

1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是指具有两组对边分别平行的四边形。它在几何图形中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过分析黑板和书本的形状,了解平行四边形在实际中的应用,以及它如何帮平行且相等、对角相等、对角线互相平分等。
-学会运用平行四边形的性质解决实际问题,如计算平行四边形的面积和周长。
举例解释:
-通过动态演示或实际操作教具,让学生直观感受平行四边形的定义。
-通过具体例子,如矩形、菱形等特殊平行四边形,讲解性质,强调性质在不同情况下的应用。
-设计实际情境题目,如校园绿化带的设计,让学生应用性质解决具体问题。
18.1平行四边形的性质(教案)
一、教学内容
本节课选自八年级数学下册第十八章“平行四边形”第一小节“18.1平行四边形的性质”。教学内容主要包括以下几点:
1.掌握平行四边形的定义,理解两组对边分别平行的四边形被称为平行四边形。
2.学习并掌握平行四边形的性质,包括对边平行且相等、对角相等、对角线互相平分等。
在实践活动中,学生们分组讨论和实验操作都非常积极。他们通过实际动手操作,更好地体会到了平行四边形性质的应用。不过,我也观察到,在讨论过程中,有些小组的思路不够开阔,需要我在旁边适时引导。这提醒我在今后的教学中,要更加注重培养学生的独立思考和团队协作能力。
学生小组讨论环节,大家的表现让我感到欣慰。他们能够围绕平行四边形在实际生活中的应用展开热烈的讨论,并提出自己的观点。但在分享成果时,部分学生的表达还不够清晰,这让我意识到在今后的教学中,需要加强学生的表达和沟通能力训练。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的定义和性质这两个重点。对于难点部分,如对角线互相平分的证明,我会通过举例和比较来帮助大家理解。
18.1平行四边形平行四边形的性质(教案)

(3)培养学生的空间观念和逻辑推理能力;
(举例:通过绘制图形、观察分析、推理证明等环节,帮助学生建立空间观念,提高逻辑推理能力。)
2.教学难点
(1)平行四边形对角线互相平分性质的推导和理解;
(举例:难点在于让学生理解为什么对角线互相平分,可以通过实际操作、图示法、证明法等多种方法帮助学生理解。)
18.1平行四边形平行四边形的性质(教案)
一、教学内容
本节课选自教科书第十八章第一节《平行四边形》,主要教学内容包括:
1.平行四边形的定义及基本性质;
2.平行四边形对边平行且相等的性质;
3.平行四边形对角相等的性质;
4.平行四边形对角线互相平分的性质;
5.平行四边形邻角互补的性质;
6.平行四边形面积的计算方法。
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的对边平行且相等、对角相等、对角线互相平分等性质。对于难点部分,如对角线互相平分的证明,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形相关的实际问题,如如何计算平行四边形的面积。
五、教学反思
在今天的教学中,我发现学生们对平行四边形的性质表现出浓厚的兴趣。他们通过观察身边的物体,能够迅速找到平行四边形的实例,这让我感到很欣慰。不过,我也注意到在讲解平行四边形对角线互相平分的性质时,部分学生显得有些困惑。我意识到,这个性质的理解确实有一定的难度,需要我在教学方法上做出调整。
在讲授新课的过程中,我尽量用生动的语言和实例来解释抽象的概念,但显然对于一些学生来说,这还不够。我觉得在今后的教学中,可以尝试增加一些互动环节,让学生亲自动手操作,比如在教具上画出对角线,观察并验证它们的平分性质。这样,他们可能会对这个性质有更直观、更深刻的理解。
人教版数学八年级下册18.1平行四边形(教案)
最后,在总结回顾环节,我发现学生们对于平行四边形的性质和判定方法掌握得较好,但在解决问题时,仍有一些学生不能灵活运用。针对这一问题,我打算在课后加强个别辅导,帮助学生巩固知识点,提高解题能力。
三、教学难点与重点
1.教学重点
-平行四边形的定义及其性质:理解平行四边形的概念,掌握其对边平行且相等的性质,以及相邻角互补和其对角线互相平分的特性。
-平行四边形的判定方法:熟练运用平行四边形的判定定理,如两组对边分别平行的四边形是平行四边形,以及一组对边平行且相等的四边形是平行四边形等。
-平行四边形面积的计算:掌握使用底乘以高或对角线乘以对角线所夹角的正弦值计算平行四边形面积的方法。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两组对边分别平行的四边形。它在几何图形中占有重要地位,许多复杂的图形都是由平行四边形组成的。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平行四边形在实际中的应用,以及它如何帮助我们解决问题,如计算不规则图形的面积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“平行四边形在建筑设计中有哪些应用?”
人教版八下数学18.1.2 课时1 平行四边形的判定(1)教案+学案
人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)教案【教学目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【教学难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【教学过程设计】一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究知识点一:两组对边分别相等的四边形是平行四边形例1如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF =60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC =DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.知识点二:两组对角分别相等的四边形是平行四边形例2如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB =∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D =∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.知识点三:对角线相互平分的四边形是平行四边形例3如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎨⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.知识点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等例4如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分”得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用例5如图,已知四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS ”可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用已知得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF 中,⎩⎨⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC=∠BCA .在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、教学小结本节课我们主要学习了平行四边形的判定方法:平行四边形的定义文字语言:两组对边分别平行的四边形叫做平行四边形.符号语言:∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形.平行四边形的判定定理1文字语言:两组对边分别相等的四边形是平行四边形.符号语言:∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形.平行四边形的判定定理2文字语言:两组对角分别相等的四边形是平行四边形.符号语言:∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形.平行四边形的判定定理3文字语言:对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.四、学习检测1..如图所示,在四边形ABCD中,AC,BD相交于点O.(1)若AD=8 cm,AB=4 cm,那么当BC=cm,CD=cm时,四边形ABCD为平行四边形;(2)若AC=8 cm,BD=10 cm,那么当AO=cm,DO=cm时,四边形ABCD为平行四边形.解析:(1)此题主要考查了平行四边形的判定定理的应用.根据两组对边分别相等的四边形是平行四边形,即可确定BC,CD的长.(2)此题主要考查了平行四边形的判定定理的应用.根据对角线互相平分的四边形是平行四边形,即可确定AO,DO的长.答案:(1)84(2)4 52.如图所示,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件: (只添加一个即可),使四边形ABCD是平行四边形.解析:答案不唯一.所填条件能使△AOB≌△COD,或者△AOD≌△COB即可.可填:①AB∥CD,②AD∥BC,③∠BAO=∠DCO,④∠ABO=∠CDO,⑤∠ADO=∠CBO,⑥∠DAO=∠BCO等.故可填AB∥CD.3.如图所示的是由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察、分析发现:①第4个图形中平行四边形的个数为.②第8个图形中平行四边形的个数为.解析:根据“两组对边分别相等的四边形是平行四边形”,可以判断图中的平行四边形的个数.通过观察、分析,寻找规律,即可解决问题.答案:①6②204.如图所示,在▱ABCD中,点E,F是对角线AC上两点,且AE=CF.求证∠EBF=∠FDE.解析:要证明∠EBF=∠FDE,根据平行四边形的性质,只要证明四边形BEDF是平行四边形即可.由AE,CF在▱ABCD的对角线上,可考虑利用“对角线互相平分的四边形是平行四边形”,证明EF与BD互相平分即可.证明:连接BD交AC于点O,如图所示,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∴四边形BEDF是平行四边形,∴∠EBF=∠FDE.【板书设计】18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)征1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用【教学反思】在本节数学课的教学中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.人教版八年级下册数学第18章平行四边形18.1平行四边形 18.1.2 平行四边形的判定课时1 平行四边形的判定(1)学案【学习目标】1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【学习重点】经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.【学习难点】掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.【自主学习】一、知识回顾1.平平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?二、自主探究知识点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,在△ABC和△CDA中,AB=CD ,AC=CA,∴△ABC_____△CDA(________).BC=DA,∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.【典例探究】例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2 如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.【跟踪练习】如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.知识点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.【典例探究】例3如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【跟踪练习】1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2知识点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,∠AOB=∠COD,∴△AOB______△COD(________).OB=OD,∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.【典例探究】例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC 于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天林莉同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,她想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是她想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)【跟踪练习】1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.四、学习中我产生的疑惑【学习检测】1.判断题(对的在括号内填“√”,错的填“×”):(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.下列命题中,正确的是()A.两组角相等的四边形是平行四边形B.一组对边相等,两条对角线相等的四边形是平行四边形C.一条对角线平分另一条对角线的四边形是平行四边形D.两组对边分别相等的四边形是平行四边形3.四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是()A.①②B.①③④C.②③D.②③④4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD5.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是___ _______.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.6.如图所示,在▱ABCD中,E,F分别为AB,CD的中点,求证四边形AECF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,∵E,F分别为AB,CD的中点,∴AE=BE=AB,CF=DF=CD.∴AE=CF,BE=DF,在△ADF和△CBE 中,AD=BC,∠B=∠D,BE=DF,∴△ADF≌△CBE(SAS).∴AF=CE,∴四边形AECF 是平行四边形.7.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形AB PE是平行四边形.第4题图第5题图8.如图,平行四边形ABCD的对角线AC,BD相交于点O,M,N分别是OA,OC的中点,求证BM∥DN,且BM=DN.证明:连接DM,BN,如图所示.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵M,N分别是OA,OC的中点,∴OM=OA,ON=OC,∴OM=ON.∴四边形BMDN是平行四边形,∴BM∥DN,且BM=DN.9.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.10.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.11.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?12.如图,在▱ABCD中,E,F,G,H分别是四条边上的点,且满足AE=CF,BG=DH,连接EF,GH.(1)猜想EF与GH的关系;(2)证明你的猜想.(1)解:EF与GH互相平分.(2)证明:连接EG,GF,FH,HE,∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.又∵DH=BG,∴AD-DH=BC-BG,即AH=CG.又∵AE=CF,∴△AEH≌△CFG.∴EH=FG,同理可证明HF=GE.∴四边形EGFH是平行四边形.∴EF与GH互相平分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
平行四边形的性质
教材内容 18.1.2平行四边形的性质 上课时间 月 日 第 节
教 具 多媒体 课 型 新授课
教
学
目
标
知 识 与 技 能 掌握“平行四边形的对角线互相平分”的性质定理
过 程 与 方 法 自主探究,归纳总结,交流合作,
情感态度价值观
能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简
单的证明题.
教学重点 平行四边形的对角线互相平分.
教学难点 运用“平行四边形的对角线互相平分”这一性质解决简单的问题.
教学内容与过程 教法学法设计
一、复习回顾
1、 平行四边形的对角线互相 。
2、 平行四边形的对角线把 平行四边形分成的4个小三角形的面
积 。
3、如图所示,在ABCD中,对角线AC、BD交于点O,下列式子中一
定成立的是( )
A. AC⊥BD B. OA=OC
C. AC=BD D. AO=OD
二、例题解析
例1.如图,ABCD的对角线AC、BD交于点O,其周长为16,且△AOB
的周长比△BOC的周长小2,求边AB和BC的长.
解:∵四边形ABCD是平行四边形
∴OA=OC(平行四边形的对角线互相平
分)
∵△AOB的周长+2=△BOC的周长
∴AB+OA+OB+2=BC+OB+OC,
即AB+2=BC
又∵ABCD的周长等于16
让学生通过自主探
究,发现问题并学会分
析解决问题。
鼓励学生自主总结
归纳知识,加强理解并
帮助记忆.
2
∴2(AB+BC)=16
即4AB+4=16
∴AB=3,BC=5.
例2.如图在□ABCD中,对角线AC与BD交于点O,作AE⊥BD,CF⊥BD,
垂足分别为E、F.
(1)指出图中的全等三角形
(2)求证:OF=OE
三、巩固练习
1、在ABCD中,对角线AC、BD相交于点O,CD=6, AC=8,BD=12,
求△AOB的周长。
2、在ABCD中,AC=6、BD=4,则AB的取值范围是__ ______.
3、教材80 页1-6题
四、课堂小结
五、课后作业
教材80页练习1、2、3
通过例题讲解和纠
错,加深学生对知识的
理解,使学生灵活应用.
通过练习巩固知
识,提高难度,使学生
学会应用并得到发展.
教
学
反
思