(推荐)高中数学数形结合思想

(推荐)高中数学数形结合思想
(推荐)高中数学数形结合思想

数形结合思想

由于新教材新大纲把常见的数学思想纳入基础知识的范畴,通过对数学知识的考查反映考生对数学思想和方法的理解和掌握的程度。数形结合的思想重点考查以形释数,同时考查以数解形,题型会渗透到解答题,题量会加大.数形结合常用于解方程、解不等式、求函数值域、解复数和三角问题中,充分发挥形的形象性、直观性、数的深刻性、精确性,弥补形的表面性,数的抽象性,从而起到优化解题途径的作用。

例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么?

分析:原方程变形为2x 2-3x =2k 后可转化为函数

y =2x 2-3x 。和函数y =2k 的交点个数问题.

解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛

物线,随着k 的变化,易知2k =-89或-1≤2k <5时只有一个公共点.∴ k =-169或-21≤k <2

5. 点拨解疑:方程(组)解的个数问题一般都是通过相

应的函数图象的交点问题去解决.这是用形(交点)解决

数(实根)的问题.

例题2.求函数u =t t -++642的最值.

分析:观察得2t +4+2(6-t )=16,若设x =42+t ,y =t -6,则有x 2+2y 2=16,再令u =x +y 则转化为直线与椭圆的关系问题来解决.

解:令42+t =x , t -6=y , 则x 2+2y 2=16, x ≥0,

y ≥0, 再设u =x +y , 由于直线与椭圆的交点随着u 的变

化而变化,易知,当直线与椭圆相切时截距u 取得最大

值,过点(0,22)时,u 取得最小值22, 解方程组

???=++-=16

222y x u x y ,得3x 2-4ux +2u 2-16=0, 令△=0, 解得u =±26.

∴ u 的最大值为26,最小值为22.

点拨解疑:数学观察能力要求透过现象,发现本质,挖掘题中的隐含条件.

例题3.已知s =1

322+-t t ,则s 的最小值为 。 分析:等式右边形似点到直线距离公式.

解:|s |=1

|32|2+-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:

(x +2)t +y -3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t -3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.

点拨解疑:由数的形式联想到数的几何意义也即形,从而以形辅数解决问

题.类似地如n bx m ay --联想到斜率,1cx d b

++联想到定比分点公式,(x -a )2+(y -b )2

联想到距离,|z 1-z 2|联想到两点间距离等.

例题4.解不等式x -3>x -1.

分析:令x -3=y ,则y 2=-(x -3) (y ≥0), 它表示抛物线的上半支.令y =x -1表示一条直线.作出图象求解.

解:作出抛物线y 2=-(x -3) (y ≥0),以及直线y =x

-1.

解方程组???--=-=)

3(12x y x y 得x =2或x =-1(舍去), 由右图可知:当x <2时不等式x -3>x -1成立,所

以原不等式的解集为{x | x <2}.

点拨解疑:一般地,形如n mx c bx ax +>++2(亦可<)等不等式皆可用数

形结合求解,更一般地可作出图象的函数或方程都可试用此法.如-3<x

1<2等.

例题5.求 m =2x +9

4362

x -的值域. 分析:设9

4362

x -=y ,即4x 2+9y 2=36(y ≥0),则求值域问题转化为求直线2x +y =m 的纵截距的范围

问题.

解:设9

4362

x -=y ,即4x 2+9y 2=36(y ≥0)又令2x +y =m ,

则由???=++-=36

94222y x m x y 得40x 2-36mx +9m 2-36=0, 令△=(36m )2-160(9m 2-36)=0, 得m =±210,

① 直线y =-2x +m 过A 点时,x =-3, y =0, m =-6取得最小值;

② 当直线与椭圆上半部分相切时,m 取得最大值210

由①②,m 的取值范围为[-6, 210], 值域为[-6,210].

例题6.A .B 为平面上的两定点,C 为平面上

位于直线AB 同侧的一个动点,分别以AC 、BC 为边,

在△ABC 外侧作正方形CADF 、CBEG ,求证:无论C

点取在直线AB 同侧的任何位置,DE 的中点M 的位

置不变.

分析:由于D 、E 随着C 的变化而变化,但M

为定点,故用几何方法不易说清变换思维角度,如

C 点坐标为参量,证得M 点坐标不随其变化而变化即可获证.

证明:以AB 中点为坐标原点,直线AB 为实轴,建立复平面. 设A 、B 、C 对应的复数分别为-a ,a ,x +yi 其中a 、x 、y ∈R . 则 AC =Z C -Z A =(x +a )+yi , AD =AC ×i =-y +(x +a )i =OA OD -,

∴ OA AD OD -==-(a +y )+(a +x )i , ∴ D 点的坐标是(-(y +a ), a +x ),

同理E 点的坐标为(y +a , a -x ), 据中点公式, DE 中点M 的坐标为(0,a ),它是与AB 长度有关,而与C 点位置无关的点,即为定点.

点拨解疑:这是用数解形的一例,可见它形象而直观,但不够深刻、精确,而数却精确细致,但它不够直观,故常以数量形,以形辅数,数形结合.

例题7.设A 、B 、C 、D 是一条有向线段上的四点,且DB

AD CB AC +=0,求证:AD AC 11+=AB

2. 分析:由于A 、B 、C .D 顺序不定,若用几何方法分类不便,故用解析法,又A 、B 、C 、D 共线,所以只需数轴即可.

证明:以四点所在直线为数轴,设A 、B 、C 、D 四点的坐标依次为0, b 、c 、

d , ∵ DB AD CB AC +=0, ∴ d b d c b c -+-=0, ∴ b (c +d )=2cd , ∴ cd d c +=b

2, 又AD AC 11+=cd d c d

c +=+11=b 2=AB 2,等式成立. 例题8.函数y =f (x )的图像为圆心在原点的两段

圆弧,试解不等式f (x )>f (-x )十x .

分析一:由图像可得出函数关系式,由形看数.

解法一:由题意及图像,有

?????<≤---≤<-=011101)(22x x

x x x f , (1) 当0f (-x )+x 得21x ->-2)(1x --+x , 解得

0

52; (2) 当-1≤x <0时, 得-21x ->2)(1x --+x , 解得-1≤x <-

552, ∴ 原不等式的解集为[-1, -552)∪(0, 5

52). 分析二:由图象知f (x )为奇函数,∴ f (-x )=-f (x ),然后再以形解数.

解法二:由图象知f (x )为奇函数,∴ 原不等式为f (x )>2x ,而方程f (x )= 2

x 的解为x =±552,据图像可知原不等式解集为[-1, -552)∪(0, 5

52). 点拨解疑:本题以形看数(解析式,奇偶性),以数解形(曲线交点A 、B )最后以形解数(不等式),这才是真正意义上的数形结合,扬长避短.

基础知识练习

一.选择题:

1.向高为H 的水瓶中注水,注满为止,如果注水量v 与水深h 的函数关系如图所示,那么水瓶的形状是

2.已知定义在R 上的偶函数f (x )在(0,+∞)上是增函数且f (31)=0则满足)(log 81x f >0的x 的取值范围是

(A ){

21}∪(2, +∞) (B )(0, 21) (C )(0, 2

1)∪(2, +∞) (D )(2, +∞) 3.已知arg(z +3)=

4

3π,则|z +6|+|z -3i |的最小值为 (A )35 (B )3 (C )53 (D )5

4.方程lg x =sin x 的根的个数是

(A )1个 (B )2个 (C )3个 (D )无数个

5.函数 y =a |x |和 y = x +a 的图像恰好有两个公共点,则实数a 的取值范围为 (A )(1, +∞) (B )(-1, 1) (C )(-∞, -1) (D )(-∞, -1)∪(1, +∞)

二.填空题:

6.已知有向线段PQ 的起点P 和终点 Q 分别为(-1,1)和(2, 2),若直线l :x +my +m =0与PQ 的延长线相交,则m 的取值范围是 . 7.若直线l :y =kx +1与曲线c :x =12+y 只有一个公共点,则实数k 的取值范围是 .

8.函数y =x

x ++-132的值域是 . 三.解答题:

9.已知4a +9b =10(a ,b ∈6 R +), 求2a 十3b 的最大值.

10.如果关于 x 的方程 sin x +a cos x =2恒有解,求实数 a 的取值范围.

高考常考题强化训练

一.选择题:

1.已知0

(A )1个 (B )2个 (C )3个 (D )以上都有可能

2.若不等式x 2-log a x <0在(0, 2

1)内恒成立, 则a 的取值范围是 (A )[161, 1) (B )(0, 161) (C )(16

1, 1) (D )(0, 1) 3.代数式22222222)1()1()1()1(-+-++-+-+++y x y x y x y x 的最小值为

(A )2 (B )22 (C )4 (D )42

4.函数 y =sin2x +a cos2x 图像的一条对称轴为x =-8

π,那么a 等于 (A )2 (B )-2 (C )1 (D )-1

5.直线y =a (a ∈R )与曲线y =cot(ωt ),(ω>0)的相邻两交点之间的距离是

(A )ωπk (B )ωπ2 (C )ω

π (D )以上都不对 6.若非零复数z 1,z 2分别对应于复平面内的点A 、B 且z 12-3z 1z 2+z 22=0, 则△

AOB 是

(A )等腰三角形 (B )等腰直角三角形

(C )等边三角形 (D )直角三角形

二.填空题:

7.若z 1,z 2为复数,且|z 1|=3, |z 2|=5, |z 1-z 2|=7,则2

1z z = 8.若 a ∈(0, 2

1),则 T 1=sin(1+a ),T 2=sin(1-a ), T 3=cos(1+a )的大小关系为 .

9.方程 |x -|2x +1||=1的不同实根的个数为 .

10.函数 u =x x 2512-+-的最大值是 .

三.解答题:

11.已知函数f (x )=ax 2-c 满足一4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的范

围.

12.已知 a ≥0, b ≥0, a +b =1,求证:2

121+++b a ≤2. 13.若 A ={x | -2≤x ≤a }, B ={y | y =2x +3,x ∈A }, C ={z | z =x 2, x ∈A },若C ?B ,求a 的值.

14.已知抛物线C :y =-x 2+mx -1,点A (3,0),B (0, 3), 求抛物线C 与线段AB 有两个不同交点时m 的范围.

基础知识练习参考答案

高中数学解题四大思想方法

思想方法一、函数与方程思想 姓名: 方法1 构造函数关系,利用函数性质解题 班别: 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使2 43x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

最新高考数学中比较大小的策略

高考数学中比较大小的策略 云南省会泽县茚旺高级中学 杨顺武 在每年的高考数学卷中,“比较大小”是一类热点问题.考生们经 常找不到解答问题的方法,乱猜导致丢分.为帮助考生避免无谓失分,本文对这类问题的解题策略进行深入探讨,以提高考生的成绩: 策略一:直接法 就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论。运用此种方法解 题需要扎实的数学基础。 例1.若2 2 221231111,,,x S x dx S dx S e dx x ===???则123S S S 的大小关系为( ) A .123S S S << B .213S S S << C .231S S S << D .321S S S << 解:本题考查微积分基本定理2 2321111733 S x dx x ===? 2 22111ln ln 21S dx x x ===?。 所以213S S S <<,选B. 策略二:估算法 就是把复杂问题转化为较简单的问题,求出答案的近似值,或把有关数值扩大或缩小, 从而对运算结果确定出一个范围或作出一个估计,进而作出判断的方法。 例2.已知ln x π=,5log 2y =,1 2z e -=,则 A.x y z << B.z x y << C.z y x << D.y z x << 解:1ln >=πx ,215log 12log 25<==y ,e e z 121 ==-,1121<

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

“函数思想”在高中数学中的教学及意义

“函数思想”在高中数学中的教学及意义 【内容摘要】函数在高中数学的全部体系中,具有极其重要的地位,拥有起承转合的功能,为了给学习更多的函数及导数、极限与积分打下稳固的根基,在高中数学学习中要重点学习函数的奇偶性、单调性还有周期性等性质。此文特别研究“函数思想”的教育与突出意义,希望得到师生的看重。 【关键词】高中数学函数思想意义 一、学习函数的重要性 关于函数的定义,在初中时会学到,但是在高中还会在初中数学的根基下继续拓展新的含义,重点是关于映射的理论,这些新概念需要学生加深对函数理论、思维、含义的掌握,必须明白之中的关联,找出函数思想的真义,才可以在遇到实际问题时灵活多变

地利用函数思想处理难题。“函数思想”体现了认识来源于实践这一哲学认识论,它来源于我们的社会活动,而函数中变量的概念也印证了人类社会在量变和质变统一中的永久性变化,所以,关于量变的一些实际问题能够用“函数思想”来解决。 德国的克莱因和英国的贝利,是函数出现在中学阶段的数学教材的关键人物。克莱因的观点是,函数概念和思想是数学教育的一部分,他说过函数是数学教育的主题,需要将所有的数学教学内容都放置在函数概念四周,综合运用。中学数学教学任务与函数思想紧密连接,在高中数学中灌输函数思想需要一线数学老师的研究,本文章就是浅议函数思想。 在函数思想讲解的初级阶段,老师起初要引出学生对函数思想的兴趣,了解函数的初步含义,调动学生的热情。教师需要分层讲解函数思想的定义,使学

生掌握函数思想的重点,全面认识函数思想的深度含义,接着,教师再概括归纳出逻辑性性强的函数定义。函数关系可以看作是通向两个变量间的路,通过特定的数学关系把两者连接在一起。 对于高中函数思想的教学来说,具有四个关键意义,有函数的知识导向功能、考试导向功能、应用导向功能和教育导向功能。知识导向功能表示的是函数思想作为高中数学的主体,在高中数学中所占份额很大,是打造高中数学全部知识的框架,因此掌握好函数有益于理解其它知识点,提升眼界,锻炼数学思维。函数的应用导向功能是指通过函数思想解决日常生活中的实际问题。函数思想的考试导向是指高考数学卷中有关函数的题型比例大。函数思想的教育导向功能是指学生创设和运用函数模型,来解决生活中的数学的实际问题,提升学生的综合素质,比如思考意识和

高中数学比较大小综合测试题

高中数学比较大小综合测试题比较大小同步练习 1、设,则下列各不等式一定成立的是() A、B、 C、D、 2.若,则下列不等式成立的是() A.B. C.D. 3、下列命题:①;②;③;④(),其中真命题是() A、①②③ B、①③④ C、②③④ D、①③ 4.给出下列四个命题: (1)若,则. (2)若,则. (3)若,则. (4)若,则. 问:哪两个命题是正确的?对不正确的命题,添加什么条件后变成正确命题. 5、(1)若,试比较与的大小; (2)设,且,试比较与的大小。 6.已知,,求证:. 7.已知,,求证:. 8.如果,,,求证:.

9.已知三个不等式:(1),(2),(3).以其中两个作为条件,余下的一个作为结论,写出两个能成立的不等式命题. 10.已知,,证明:. 11、已知,设,比较M、N、P的大小。 12.求证:. 13.设,求下列式子的取值范围:(1);(2); (3);(4). 14.设,分别求出(1);(2);(3)的取值范围.15.已知,求的取值范围. 教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。 与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,

数形结合思想在高中数学教学中的应用

数形结合思想在高中数学教学中的应用 更新时间:2018-9-25 19:11:00 浏览量:1250 【摘要】数形结合思想是一种重要的数学思想,在高中数学教学中,必须要注重对这种思想的应用,培养学生的数形结合意识,从而提高学生的知识能力。针对这种情况,文章对数形结合思想在高中数学教学中的应用进行了相应的分析和探讨。 【关键词】数形结合思想;高中数学教学;应用 数形结合思想在高中数学教学中的应用,有利于提高学生的数学知识能力,培养学生的思维能力和解题能力,提升学生的学习效果。但是在当前高中数学教学过程中,对于数形结合思想的实际教学应用尚有不足,因此需要注重强化数形结合思想在教学中的应用,采取有效的应用措施,从而提升教学质量和效果。 一、高中数学数形结合教学的现状 (一)数形结合教学意识不足 当前在我国高中数学教学过程中,数形结合的教学思想还没有得到充分应用,对于相应思想的教学运用尚有不足。随着我国课程教学改革工作的不断推进,传统的应试教学观念已经逐渐被人们所摒弃,在高中数学教学中越来越注重对学生数学能力和思维能力的培养。但是在实际教学中,大部分教师还停留在传统的教学模式上,只重视对学生数学基础和应试能力的培养,忽视了数形结合教学思想在教学中的应用。在这种教学观念的影响下,

学生的综合素质发展受到了一定的限制,教学过程忽视了对学生的数学思维能力和数形结合意识的培养,使得教学效果受到了一定的影响。并且在教学过程中,由于教师过于注重学生的成绩,导致学生在学习中逐渐出现了高分低能的现象,不利于学生未来的发展。 (二)传统教学模式的制约 传统的教学模式是影响高中数学教学发展的一个重要因素,同时也限制了数形结合思想在高中教学中的应用。在高中数学教学中,传统的教学模式大都采用填鸭式、满堂灌的教学方式,由教师主导整个课堂教学活动,向学生进行知识的灌输。在这种教学模式下,学生只能被动地接受教师的知识灌输。数形结合教学思想分散在教学之中,没有形成一定的教学规模,导致学生的数形结合意识较弱。并且严重忽视了学生的学习主体性以及学生之间的个体差异,导致学生的学习积极性和学习兴趣逐渐下降,甚至会影响到学生的学习质量和效率。 二、数形结合思想在高中数学教学中的应用分析 在高中几何数学中,可以通过观察图形,建立“数”与“形”的对应关系,找到解决问题的方法。也可以通过几何图形将数量的关系形象地展示出来,在图形上分析数量之间的关系,进而解决问题。几何图形和数量關系是相辅相成的,数量可以在图形上展示出来,也可以用数量关系来表达图形联系。例如:在例1的教学中,直接将数量关系转化成式子不容易,但是教师

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

高中数学四大思想

高中数学四大思想 1.数形结合思想 数形结合,“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 实质:将抽象的数学语言与直观图形结合起来;将抽象思维和形象思维结合起来。抽象问题具体化,复杂问题简单化。 应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图; (2)函数及其图象; (3)数列通项及求和公式的函数特征及函数图象; (4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合. 2.分类讨论思想 分类讨论思想,即根据所研究对象的性质差异,分各种不同的情况予以分析解决. 原则:化整为零,各个击破。无重复、无遗漏、最简。 步骤: 1)明确讨论对象,确定对象范围; 2)确定分类标准,进行合理分类,做到不重不漏; 3)逐类讨论,获得阶段性结果; 4)归纳总结,得出结论。 常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.

3.函数与方程思想 函数思想,即将所研究的问题借助建立函数关系式或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; 方程思想,即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到: (1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质。 (2)密切注意一元二次函数、一元二次方程、一元二次不等式等问题;掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略。 4.转化与化归思想 转化与化归思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想。 转化,是将数学命题由一种形式向另一种形式的变换过程; 化归,是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化有等价转化与不等价转化。等价转化后的新问题与原问题实质是一样的;不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正。 原则:化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与数的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

学而思高中数学1-不等式比较大小

【例1】 若0a b <<,1a b +=,则在下列四个选项中,较大的是( ) A .1 2 B .22a b + C .2ab D .b 【例2】 将23 2,12 23?? ??? ,1 22按从大到小的顺序排列应该是 . 【例3】 若2x = ,2x =,x y 满足( ) A .x y > B .x y ≥ C .x y < D .x y = 【例4】 若 11 0a b <<,则下列不等式中, ①a b ab +< ②||||a b > ③a b < ④ 2b a a b +> 正确的不等式有____ .(写出所有正确不等式的序号) 典例分析 比较大小

【例5】 已知,a b ∈R ,那么“||a b >”是“22a b >”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 【例6】 若0b a <<,则下列不等式中正确的是( ) A .11a b > B .a b > C .2b a a b +> D .a b ab +> 【例7】 比较下列代数式的大小: ⑴ 23x x +与2x -; ⑵ 61x +与42x x +; 【例8】 比较下列代数式的大小: ⑴ 43x x y -与34xy y -; ⑵0xy >,且x y >) ⑶ x y x y 与y x x y (其中0,0,x y x y >>≠).

【例9】 a 、b 、c 、d 均为正实数,且a b >,将 b a 、a b 、b c a c ++与a d b d ++按从小到大的顺序进行排列. 【例10】 比较大小:log a a b 、log a b 与log b a (其中21a b a >>>) 【例11】 已知a 、b 、c 、d 均为实数,且0ab >,c d a b - <-, 则下列各式恒成立的是( ) A .bc ad < B .bc ad > C .a b c d > D .a b c d < 【例12】 当a b c >>时,下列不等式恒成立的是( ) A .ab ac > B .a c b c > C .ab bc > D .()0a b c b --> 【例13】 已知三个不等式:0ab >,0bc ad ->, 0c d a b ->(其中a 、b 、c 、d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( ) A .0 B .1 C .2 D .3

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

中学数学中四种重要思想方法

中学数学中四种重要思想方法 一、函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想. 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想. 二、数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合. 1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短. 2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”.这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一.因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂. 3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质. 4.华罗庚先生曾指出:“数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系. 5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题).而以形为手段的数形结合在高考客观题中体现. 6.我们要抓住以下几点数形结合的解题要领: (1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可; (2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用; (3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的. 三、分类讨论的数学思想 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答. 1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种: (1)涉及的数学概念是分类讨论的; (2)运用的数学定理、公式、或运算性质、法则是分类给出的;

高考数学复习专题 比大小 全套练习题及答案解析

第五篇 不等式 专题30 十拿九稳----比较大小 【热点聚焦与扩展】 高考命题中,常常在选择题或填空题中出现一类比较大小的问题,往往将幂函数、指数函数、对数函数、三角函数等混在一起,进行排序.这类问题的解法往往可以从代数和几何两方面加以探寻,即利用函数的性质及图象解答.本专题以一些典型例题来说明此类问题的方法与技巧. (一)常用技巧和方法 1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+∞ (1)如果底数和真数均在()0,1中,或者均在()1,+∞中,那么对数的值为正数 (2)如果底数和真数一个在()0,1中,一个在()1,+∞中,那么对数的值为负数 例如:30.52log 0.50,log 0.30,log 30<>>等 2、要善于利用指对数图象观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了 3、比较大小的两个理念: (1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况 例如:1 113 4 2 3,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同 ()()() 111111436342 12 12 12 33 ,44 ,55 ===,从而只需比较底数的大小即可 (2)利用特殊值作“中间量”:在指对数中通常可优先选择“-1,0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较 4、常用的指对数变换公式: (1)n m m n a a ??= ???

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2 =++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10)k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202 解,得;解,得()()I x II x 0220≤<-≤<

初高中数学衔接之数学思想方法

初高中数学衔接之数学思想方法

初高中数学衔接 ——数学思想方法目录 一、方程与函数思想 1.1方程思想 1.2函数思想 二、数形结合思想 2.1数形结合思想 三、分类讨论思想

1.1 方程思想 方程知识是初中数学的核心内容。理解、掌握方程思想并应用与解题当中十分重要。所谓方程思想就是从分析问题的数量关系入手,适当设定未知数,把已知量与未知量之间的数量关系转化为方程(组)模型,从而使问题得到解决的思维方法。对方程思想的考查主要有两个方面:一是列方程(组)解应用题;二是列方程(组)解决代数或几何问题。 (1)高中体现 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决 举例: 例1已知函数f (x )=log m 3 3+-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由 解 (1)?>+-03 3x x x <–3或x >3 ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有0) 3)(3()(6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数 (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数 ∴??? ????-=+-=-=+-=)1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

高中数学中的数形结合思想

第十四讲 数形结合思想 基础知识点: 1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。 2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。 4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。 经典例题剖析 1.选择题 (1)(2007浙江)设21()1x x f x x x ??=?

高中数学解题四大思想方法(数学)

思想方法一、函数与方程思想 方法1 构造函数关系,利用函数性质解题 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使243x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

数形结合思想及其在高中数学教学中的应用实践

数形结合思想及其在高中数学教学中的应用实践-中学数学 论文 数形结合思想及其在高中数学教学中的应用实践 文/景占东 【摘要】在高中数学的教学过程当中,数形结合方法贯穿整个教学的始终。而数形结合方法实质上就是按照数据和图形之间的对应关系,将比较抽象的语言,通过图形表达出来,或者是将图形用数学语言表达出来。在高中数学的某些问题的解题过程当中,通过应用数形结合思想,会使问题变得更加的简单化、直观化,开拓了学生的解题思路,使学生能够对一些比较难的问题也有了解题思路。因此,在高中数学的教学过程当中,要积极培养学生在这方面的能力,将数形结合思想真正的应用到答题当中。 关键词数形结合思想;高中数学;应用 在历年的高考题当中,数形结合思想一直是众多思想方法当中考查的重点,与此同时,数形结合思想也是数学研究领域经常使用的方法。因此,在高中数学的教学过程当中,我们应该加大对学生数形结合思想应用的训练力度,使学生们真正地认识到数与形之间的关系,并且能够灵活的通过数形转换,进而解决数学中的一些难题,锻炼学生的思维能力。 一、数形结合思想遵循的原则 在数形结合思想的应用过程当中,要遵循下面的两个原则,才能真正的正确的使用数形结合思想。 1.等价原则。等价原则就是说在进行数与形的转换过程当中,要保证数的代数意义与形的几何意义是相同的,也就是说在同一个问题当中,数与形所反映的问题

的反差关系是一致的,要准确构建图形与数字的关系。 2.双向性原则。双向性原则就是说不仅要通过图形的直观分析,也要进行数学语言的研究,因为数学的语言表达和计算自身的严谨性等优势,能够避免一些图形的约束性,达到更好的解题效果。 二、数形结合在高中数学中的应用 在数学的解题过程当中,数形结合思想能够具有双面的效应,我们可以通过将数形合理的进行转换,达到一定的解题效果。 (一)数到形的转换 其一,在数学的方程和不等式问题当中,我们可以利用方程和不等式和函数图像,直线之间的位置关系和交点,或者是利用函数图像所具有的其他特征,来解答相关问题。与此同时,在日常的学习当中,学生们要将基础知识记牢,将函数图像所具有的一些性质掌握,并且能够在此基础上发散思维,保证答题的完整性。其二,在一些考题当中,要求学生求解代数式的相关几何性质,像这样的考题,我们可以根据平面向量的数量和模的相关性质,将代数式转换到图形当中,从而解决相关的问题。 其三,在一些考题当中,要求同学们根据代数式的结构,求解相关的几何图形或者是根据几何的图形的性质,求得相关问题,但是有的题目中并未给出明确的图像,或者是提供的图像不具有代表性,不能够全面的解答问题,这个时候我们就需要认真剖析代数式的结构和题中给出的相关条件,画出相应的图形,并根据图形的一些定理、公式以及性质等,来解答问题,比如说勾股定理、正弦定理、余弦定理等。 其四,在一些考题当中,要求解答代数式的图形背景和相关性质,此时,我们可

相关文档
最新文档