飞行时间质谱仪

合集下载

四极杆飞行时间质谱仪原理

四极杆飞行时间质谱仪原理

四极杆飞行时间质谱仪原理
四极杆飞行时间质谱仪是一种常用于质谱分析的仪器。

其原理基于带电粒子在磁场中受到洛伦兹力以及电场力的作用,从而确定粒子的质量和电荷比。

该仪器由四根平行排列的金属杆(四极杆)组成,杆之间存在一定的电势差,形成一个电场。

在四极杆的两端还有一个均匀的磁场作用,形成一个向前加速粒子的区域。

当带电粒子进入仪器后,首先会在电场中加速,并沿着四极杆飞行。

同时,磁场会对粒子施加一个垂直于杆的洛伦兹力,使其偏离原来的路径。

由于电场和磁场力的施加方向不同,使得粒子在四极杆内做着动态的偏转运动。

根据四极杆飞行时间质谱仪的工作原理,可以将不同质量和电荷比的粒子分离出来。

因为不同质量和电荷比的粒子会受到不同大小的洛伦兹力和电场力的影响,从而在四极杆内拥有不同的飞行时间。

通过测量粒子飞行时间和飞行距离的关系,可以计算出粒子的质量和电荷比。

四极杆飞行时间质谱仪在实际应用中具有广泛的用途。

它可以用来分析和鉴定各种物质的成分和结构,包括有机化合物、无机离子、生物大分子等。

同时,该仪器还可以进行质量测定、同位素分析以及反应动力学等研究。

总结起来,四极杆飞行时间质谱仪的工作原理是基于带电粒子在电场和磁场的共同作用下进行运动,通过测量粒子的飞行时
间来确定其质量和电荷比。

这种仪器具有高分辨率、高灵敏度和广泛的应用领域。

飞行时间质谱仪工作原理

飞行时间质谱仪工作原理

飞行时间质谱仪工作原理以下是关于飞行时间质谱仪工作原理的详细解释:1. 简介飞行时间质谱仪是一种分析质谱法,基于离子在电场中加速并飞行一段时间,再根据离子飞行时间和质量-电荷比确定离子种类和相对丰度。

它具有高分辨率、高灵敏度和宽质量范围等优点,在生物、环境、制药和材料等领域有广泛应用。

2. 工作原理飞行时间质谱仪是由飞行时间池、离子源、荧光屏、探测器等组成的。

离子源会产生离子,通过飞行时间池加速并获得能量,离子在这里先经过一个螺旋状器件,使得离子以螺旋状运动。

这种运动可以让离子散布到一个较大的区域内,增大质量分辨率。

这时离子同时通过一个栅极,使其离开螺旋状轨道并以匀速向前运动。

离子到达荧光屏后,失去能量而产生荧光,并被安装在荧光屏后方的探测器采集。

探测器产生的信号呈现出来自不同质量的离子的秒数—计数率分布。

离子通过飞行时间池加速后的速度和能量与离子的质量成反比,质量大的离子,在相同的加速下加速后获得的能量小,飞行时间长,而质量小的离子相反。

离子在离子源中产生时可以选择某一电荷态,所以离子的质量-电荷比(m/z)可以确定,且离子源不同,分子或离子的电荷也不同。

3. 应用飞行时间质谱仪可以应用于许多不同的领域,例如:蛋白质组学、代谢组学、食品和环境检测、新药研发等。

飞行时间质谱仪可以在生命科学、医疗和化学分析等领域中提供独特的洞察力,从而帮助研究人员更好地了解生命过程,诊断疾病和制药工业研究。

总结:飞行时间质谱仪是一种基于离子在电场中加速并飞行一段时间,再根据离子飞行时间和质量-电荷比确定离子种类和相对丰度的分析质谱法。

它具有高分辨率、高灵敏度和宽质量范围等优点,在生物、环境、制药和材料等领域有广泛应用。

气溶胶单颗粒飞行时间质谱仪-概述说明以及解释

气溶胶单颗粒飞行时间质谱仪-概述说明以及解释

气溶胶单颗粒飞行时间质谱仪-概述说明以及解释1.引言1.1 概述气溶胶单颗粒飞行时间质谱仪(Aerosol Single-ParticleTime-of-Flight Mass Spectrometer,简称SP-TOFMS)是一种高精度、高效率的气溶胶成分分析仪器。

它通过将气溶胶粒子引入到仪器中,利用粒子的质量与时间相关性,实现对其成分、形状、大小等性质的测量和分析。

相比于传统的气溶胶质谱仪,气溶胶单颗粒飞行时间质谱仪具有更高的粒径分辨率和质谱分辨率。

它能够对具有不同质量的气溶胶粒子进行快速且准确的分析,实现对气溶胶粒子成分的高灵敏度检测。

气溶胶单颗粒飞行时间质谱仪的工作原理是基于飞行时间质谱(Time-of-Flight Mass Spectrometry,简称TOFMS)技术。

当气溶胶粒子进入仪器后,首先通过一个导流装置被引导到进样室。

在进样室内,气溶胶粒子与激光光束相互作用,形成离子。

然后,离子经过一个加速器,在高电场的作用下加速,并进入到飞行时间管道。

不同质量的离子由于飞行时间的差异,会在飞行时间管道内分别到达不同位置,最后被接收器探测到,并转换成电信号。

通过测量离子的飞行时间,结合对离子的质量进行鉴定和分类,气溶胶单颗粒飞行时间质谱仪能够实现对粒子的准确定性和定量分析。

同时,它具备快速分析速度和高灵敏度的优点,能够对大量的气溶胶粒子进行高效率的连续监测。

气溶胶单颗粒飞行时间质谱仪在大气环境监测、大气污染源解析、气溶胶成分研究等领域具有广泛的应用前景。

它能够提供准确、快速、高分辨率的气溶胶粒子成分信息,有助于深入了解气溶胶的来源、转化过程以及对环境和人体健康的影响,为环境保护和健康研究提供有力支持。

文章结构部分的内容如下:1.2 文章结构本文共分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个方面。

概述部分将阐述气溶胶单颗粒飞行时间质谱仪在当前研究领域的重要性和应用前景。

飞行时间质谱仪原理

飞行时间质谱仪原理

飞行时间质谱仪原理飞行时间质谱仪(Time-of-Flight Mass Spectrometer,TOFMS)是一种常用的质谱仪,它通过测量离子在电场中飞行的时间来确定其质量。

TOFMS具有高分辨率、高灵敏度和宽质量范围等优点,因此在化学、生物、环境等领域得到了广泛的应用。

本文将介绍飞行时间质谱仪的原理。

首先,TOFMS的工作原理是基于离子在电场中的飞行时间与其质量成反比的关系。

当样品被离子化后,离子会在加速器的作用下获得一定的动能,然后进入飞行管道,在飞行过程中,不同质量的离子因具有不同的速度而到达检测器的时间也不同。

通过测量飞行时间,可以得到离子的质量信息。

其次,TOFMS的分辨率与飞行时间的精确度有关。

为了提高分辨率,飞行时间必须被准确测量。

因此,TOFMS通常会使用高速电子学和精密的时间测量装置来确保飞行时间的准确性。

这些技术的应用使得TOFMS在质谱分析中具有较高的分辨率和准确性。

此外,TOFMS在质谱分析中还有一些特殊的应用。

例如,飞行时间质谱仪可以用于蛋白质质谱分析。

蛋白质在质谱仪中被离子化后,会产生大量的离子片段,这些离子片段会在飞行管道中飞行并被检测。

通过测量离子片段的飞行时间,可以得到蛋白质的质谱图谱,从而确定蛋白质的氨基酸序列和结构信息。

最后,TOFMS在生物医学领域也有着重要的应用。

例如,飞行时间质谱仪可以用于药物代谢产物的分析。

通过测量药物代谢产物的飞行时间,可以确定其分子量和结构,从而帮助科学家了解药物在体内的代谢途径和代谢产物的性质。

总之,飞行时间质谱仪是一种重要的质谱分析仪器,它通过测量离子在电场中的飞行时间来确定其质量,具有高分辨率、高灵敏度和宽质量范围等优点。

TOFMS在化学、生物、环境等领域得到了广泛的应用,并在蛋白质质谱分析、药物代谢产物分析等方面发挥着重要作用。

希望本文能够帮助读者更好地了解飞行时间质谱仪的原理和应用。

质谱基础知识飞行时间质谱仪原理及应用

质谱基础知识飞行时间质谱仪原理及应用
营养成分和功能成分分析
飞行时间质谱仪能够检测食品中的营养成分和功能成分,为食品的 营养评价和功能研究提供依据。
04
质谱技术的发展趋势
高灵敏度质谱技术的发展
灵敏度提升
随着技术的不断进步,质谱仪的 灵敏度不断提高,能够检测到更 低浓度的物质,为痕量物质的分 析提供了可能。
选择性增强
高灵敏度质谱技术通过改进离子 化方法和分离技术,提高了对复 杂样品的选择性,降低了干扰物 质的影响。
质谱的应用领域
01
02
03
04
生物医药
用于蛋白质、核酸等生物大分 子的检测和鉴定。
环境监测
检测空气、水体中的有害物质 和污染物。
食品安全
检测食品中的添加剂、农药残 留等。
化学分析
对有机化合物进行定性和定量 分析,用于化学反应机理研究
等。
02
飞行时间质谱仪原理
飞行时间质谱仪的结构
电离源
用于将样品分子转化为带电离 子,常见电离源有电子轰击、 化学电离、电喷雾等。
飞行管
离子在其中进行无散射的飞行 ,通常由真空密封的管子组成 。
ቤተ መጻሕፍቲ ባይዱ
进样系统
用于将样品引入质谱仪中,通 常采用气相色谱或直接进样方 式。
加速电场
用于加速离子,使其获得足够 的能量进入飞行管。
检测器
用于检测到达终端的离子,通 常采用电子倍增器或微通道板 。
飞行时间质谱仪的工作原理
01
02
03
04
进样系统将样品引入电离源, 电离源将样品分子转化为带电
在化学领域的应用
在化学领域,质谱技术用于研究化合物的结构、组成、反应机理等,可以用于合成路线的确定、反应条件的优化等。

飞行时间质谱仪原理

飞行时间质谱仪原理

飞行时间质谱仪原理
飞行时间质谱仪(Time-of-Flight Mass Spectrometer,简称
TOF-MS)是一种常用于分析和鉴定化学物质的仪器。

其原理
基于粒子在电场下的加速运动和质量差异带来的飞行时间差异。

首先,待分析的物质通过电离源(如电子轰击或激光辐射)被电离成带电粒子。

然后,这些带电粒子在电场的作用下被加速,并以一定的速度进入飞行时间通道。

在飞行时间通道中,粒子在真空环境中以匀速飞行。

不同质量的粒子由于质量差异,会有不同的飞行速度。

质量较大的粒子会飞行得更慢,而质量较小的粒子则飞行得更快。

当粒子通过飞行时间通道末端的检测器时,它们会触发一个信号。

通过测量从电离到检测器的飞行时间,可以得到粒子的质量-电荷比(m/z)值。

飞行时间质谱仪的主要优势在于其高分辨率和宽质量范围。

由于飞行时间通道中所有粒子都以相同的速度飞行,不同质量的粒子可以被有效地分离和检测。

此外,TOF-MS还可以进行串联质谱(tandem mass spectrometry,简称MS/MS)分析。

通过在飞行时间通道后面
添加一个碰撞池,可以将粒子进一步分解成碎片离子,并对其进行质谱分析,从而得到更详细的质谱信息。

总之,飞行时间质谱仪利用粒子在电场下的加速运动和质量差
异造成的飞行时间差异,实现了对化学物质的分析和鉴定。

它在分析化学、生物医学和环境科学等领域具有广泛的应用。

电化学原位飞行时间质谱仪

电化学原位飞行时间质谱仪

电化学原位飞行时间质谱仪(Electrochemical In Situ Time-of-Flight Mass Spectrometer)是一种先进的质谱仪器,用于研究电化学过程中的离子和分子物种。

该仪器的主要特点是将电化学反应与质谱分析相结合,实现了对电化学界面上物种的实时检测和分析。

它可以在电极表面进行原位监测,捕捉并分析生成的离子和分子物种。

电化学原位飞行时间质谱仪的主要组成部分包括以下几个方面:
电化学反应单元:包括工作电极、参比电极和计数电极等,用于进行电化学反应和产生离子和分子物种。

飞行时间质谱分析单元:包括离子源、质量筛选器和飞行时间质谱检测器等。

离子源将电化学反应产生的离子和分子物种离子化,并通过质量筛选器进行质量选择,最后通过飞行时间质谱检测器进行质谱分析。

控制与数据处理系统:用于控制仪器的运行和实时数据采集。

它包括高压控制、质谱信号采集和数据分析等功能。

电化学原位飞行时间质谱仪的优势在于可以实现对电化学界面上物种的原位监测和分析,具有以下特点:
实时性:仪器能够进行实时监测和分析,捕捉电化学过程中瞬时产生的离子和分子物种,提供动态的信息。

高分辨率:采用飞行时间质谱分析技术,可以实现高分辨率的质谱分析,区分出不同离子和分子物种的质量差异。

原位监测:仪器可以在电化学界面上直接进行监测,避免了可能的扰动和转移过程中的信息丢失。

电化学原位飞行时间质谱仪在电化学催化、电化学能源存储、电化学反应机理等领域具有广泛应用。

它可以帮助研究人员深入了解电化学过程中的离子和分子行为,推动电化学科学和相关应用的发展。

质子转移反应飞行时间质谱仪原理

质子转移反应飞行时间质谱仪原理

质子转移反应飞行时间质谱仪原理
质子转移反应飞行时间质谱仪(PTR-TOF-MS)是一种高灵敏度
的质谱仪,用于气相和气溶胶中挥发性有机化合物(VOCs)的分析。

它的工作原理基于质子转移反应(PTR)和飞行时间(TOF)技术。

首先,让我们来看看质子转移反应(PTR)的原理。

在PTR-
TOF-MS中,样品气体通常与H3O+(氢氧根离子)接触,形成离子化
的分子。

这些离子化的分子具有不同的质荷比,它们通过电场加速
器进入飞行时间部分。

接下来是飞行时间(TOF)部分的原理。

一旦分子离子化并加速,它们进入飞行管道,其中它们在电场的作用下以不同的速度飞行。

根据飞行时间和离子质荷比的关系,可以确定分子的质量。

通过测
量到达检测器的时间,可以计算出分子的飞行时间,从而确定其质量。

PTR-TOF-MS的工作原理可以帮助科学家快速、准确地分析复杂
的气味和气味混合物,例如大气中的挥发性有机化合物、生物质燃
烧产物和环境挥发性有机化合物等。

这种技术在环境监测、生物地
球化学、大气化学等领域具有重要的应用价值。

总的来说,PTR-TOF-MS利用质子转移反应和飞行时间技术,能够快速、高灵敏地分析气相和气溶胶中的挥发性有机化合物,为环境科学和相关领域的研究提供了重要的分析工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南师范大学






专业:新联物理
年级:2011级
学号:11020274003
姓名:王冉
飞行时间质谱仪
质谱仪(Mass spectrometry)是对电离的原子、分子以及分子的碎片进行测量。

质谱仪有磁式、四电极的与飞行时间的等多种类型。

按照带电粒子在磁场或电场中的飘移,或他们移动能量来确定它们的荷质比。

在激光质谱检测中最常用的是四级质谱仪与飞行时间质谱仪Time of Flight Mass Spectrometer (TOF),尤其是飞行时间质谱仪。

飞行时间质谱仪是一种很常用的质谱仪。

这种质谱仪的质量分析器是一个离子漂移管。

由离子源产生的离子加速后进入无场漂移管,并以恒定速度飞向离子接收器。

离子质量越大,到达接收器所用时间越长,离子质量越小,到达接收器所用时间越短,根据这一原理,可以把不同质量的离子按m/z值大小进行分离。

飞行时间质谱仪发展史:1948年A1E1Cameron和D1F1Eggers研制出世界上第一台飞行时间质谱仪实验样机,其直线飞行管长达10m,分辨率却不到5。

初期由于质量分辨本领很低,很长时间未得到推广应用,但研究工作一直持续不断。

值得注意的进展是1955年W1C1Wiley和I1H1Mclaren从理论上探讨限制TOFMS分辨率的两个主要因素,即初始空间分散和初始能量分散,并通过新型离子枪,双场加速和延迟引出的方法,将直线式飞行时间质谱仪的分辨率提高到300。

但此后的20年,TOFMS的发展一直处于低谷,其分辨率在几百之内。

直到1973年B1A1Marmylin引入静电反射器制成反射式飞行时间质谱仪,用离子
反射器抵消同一质荷比不同初始能量的离子飞行时间的分散,使得TOFMS的分辨率有较大突破达到3000。

另一项重要的革新则是1987年发明的垂直引入技术,不仅提高离子传输效率还为各种离子源与飞行时间分析器相联提供一个通用接口。

此后伴随着快电子技术、大面积检测器技术、计算机技术和机械加工工艺的不断进步,TOFMS的性能也不断提高。

1998年A1F1Dodonov等设计一台垂直引入反射式TOFMS,其质量分辨率达到20000以上。

该技术的出现使TOFMS进入一个前所未有的快速发展阶段。

在飞行时间质谱仪里,以往多采用单场推斥脉冲,但现在多采用双推斥脉冲。

采用双推斥脉冲可以保证不增加离子的空间分散和能量分散,这对提高仪器的分辨率非常重要。

使用正负双推斥脉冲就相当于把原有的脉冲峰峰值增加了一倍,可以克服传统的单脉冲在提高脉冲幅值的同时又要使脉冲的上升沿很陡峭的难题,从而减小回头时间的影响,提高了推斥脉冲的幅度。

在双场加速的一阶空间聚焦点落在检测器上后,推斥板的推斥脉冲前沿几乎成为垂直引入式飞行时间质量分析器分辨本领的决定因素
飞行时间质谱仪可检测的分子量范围大,扫描速度快,仪器结构简单。

这种飞行时间质谱仪的主要缺点是分辨率低,因为离子在离开在离子源时初始能量不同,使得具有相同质荷比的离子达到检测器的时间有一定分布,造成分辨能力下降。

改进的方法之一是在线性检测器前面的加上一组静电场反射镜,将自由飞行中的离子反推回去,初始能量大的离子由于初始速度快,进入静电场反射镜的距离长,返回时的路
程也就长,初始能量小的离子返回时的路程短,这样就会在返回路程的一定位置聚焦,从而改善了仪器的分辨能力。

这种带有静电场反射镜的飞行时间质谱仪被称为反射式飞行时间质谱仪/Reflectron time-of-flight mass spectrometer。

飞行时间质谱仪的特点:EMG系列气体分析仪采用先进的飞行时间质谱技术,与红外、热导、磁氧等传统分析技术相比,具有质谱分析的所有优点如测量速度快、精度高、采样量少、系统集成化和自动化程度高等。

飞行时间质谱技术本身具有明显优于其他类型质谱的特点:最宽的测量范围;最快的分析速度;最小巧的结构;最少的运转费用。

在许多日常实例中都可以体会到它的好处,下面从一些例子中去了解。

大气粒子表征、排放源识别:
TSI 3800型气溶胶飞行时间质谱仪是结合美国加州河边分校新开发的质谱检测技术和TSI公司多年的气溶胶仪器生产经验,于2000年推出了世界首台商品化的气溶胶“飞行时间”质谱仪,它的出现填补了实时分析气溶胶化学成分的空白(能获得每一气溶胶颗粒的尺寸与其化学成分),彻底开拓了一个全新的气溶胶科研方向。

3800-ATOFMS能够提供粒径为0.03~3μm的单个粒子的尺寸测量和成分分析。

它使用空气动力学单颗粒粒径测量技术,对进入仪器的0.03~3μm的粒子进行粒径测量,得到其粒径分布。

粒子飞行时间数据作为计时触发器,精确计算每个粒子飞行至电离激光的焦点区域时
激光发射并电离粒子,电离后的粒子进入后段的双极飞行时间质谱仪,它将对激光离子化的粒子进行化学成分分析,双极探测器可以获得每个粒子的正极和负极质谱。

室内空气质量检测:
LAAP-TOF型气溶胶飞行时间质谱仪是专门设计用于大气气溶胶研究和测量的一个有力工具。

它采用空气动力学透镜进样系统的质谱仪,有效地提高进样效率和检测效率。

并优化双光束测径装置和激光解析电离装置的空间结构,缩短气溶胶漂移空间从而提高小颗粒的检测极限,可同时检测粒子电离出的正负离子,为研究大气气溶胶快速变化的物理化学过程如气溶胶的形成、迁移和传输、气溶胶的种类识别和源解析以及气溶胶对环境、气候和人类健康的影响等提供重要数据。

化学和生物气溶胶检测:
目前,最高级版本的飞行时间气溶胶质谱仪不仅提高了灵敏度,还完成单粒子完整图谱的分析。

HR-ToF-AMS 的质谱分辨率超过4000。

即使在m/z<100 处也能清晰地分析(C, H, O, N),但对于其它化学组成象金属元素(铁、锌、铅、汞等)和多环芳烃等存在可能性。

飞行时间气溶胶质谱仪为实时测量气溶胶颗粒粒径及化学组分的仪器,具有极高的时间分辨率及极低的化学检测限,它的出现填补了实时定量分析气溶胶颗粒粒径和化学分析空白,彻底开拓了一个全新的气溶胶科研方向。

有效分析气溶胶粒子粒径大约在0.04~1.0μm。

它通过空气动力学聚焦镜把入口处不同位置的气溶胶粒子有效地聚焦
成一束气溶胶粒子束(直径大约为1 毫米),然后传输到仪器粒径测量区,这之间经历一个极大的压降(从入口处 1.01×105 Pa 降至4.0×102Pa)。

进入粒径测量区的气溶胶粒子束由斩波器进行调制,根据不同粒径的粒子经过斩波器到电离区的飞行时间不同,对粒子动力学粒径进行测量。

到达电离区的气溶胶粒子由加热的钨丝热解析,使得颗粒组分气化,通过标准70eV 的电子轰击电离,再由四极杆质谱仪或飞行时间质谱仪进行成分检测。

该仪器一般可以检测气化温度在200到900℃之间的化合物,囊括了大部分大气气溶胶组成成分,但不包括含元素碳和地壳氧化物。

气溶胶质谱仪不仅广泛应用于大气气溶胶理化特征分析、光化学烟雾的模拟及二次颗粒物的研究,而且成功地应用于流动实验室(包括道路机动车尾气排放的采样)、船舶和航空测量研究中。

吸入毒理学研究:
移动式实时在线单颗粒气溶胶飞行时间质谱仪(Single Partical Aerosol Mass Spectrometer)SPAMS 05-- 系列”。

其中SPAMS0515可实现单颗粒气溶胶粒径和化学成分同时检测;升级的SPAM0516除具有SPAMS0515功能外还可实现颗粒光学特性同步测定。

SPAMS05 系列,采用空气动力学透镜、双光束粒径测量系统、激光电离系统及双极有网反射飞行时间质量分析器,融合国际上气溶胶真空采集、质谱分析检测的最新技术以及气溶胶光学特性和密度测量技术。

SPAMS05--系列的实时在线检测技术克服传统离线分析采样时间长、样品在采集、贮存和运输过程中可能发生如挥发、结晶、气-粒转化
等反应的缺点,还原气溶胶单颗粒的真实状况,可灵活转场满足跨地区实验要求,为研究人员提供真实可靠的实时颗粒信息。

广泛应用于大气环境监测、工业过程监测以及全球气候变化、大气化学、气溶胶药物-释放、吸入毒理学等研究领域,是功能强大而精准的新型分析测试工具。

我国飞行时间质谱技术经过多年的发展,已有一定的经验积累,成功研制出数台不同形式的样机,并在多个领域得以应用。

但仪器总体性能较低,操作自动化程度不高,没有形成规模。

我国的飞行时间质谱仪发展形势严峻,为了改变我国质谱仪落后的局面,作为新时代的接班人,我们要肩负我们的责任,开创新局面。

相关文档
最新文档