2020高三数学理科小题狂做(4)含答案

合集下载

2020年高考全国卷理科数学模拟试卷(4)Word版附答案及解析

2020年高考全国卷理科数学模拟试卷(4)Word版附答案及解析

2020年高考全国卷理科数学模拟试卷(4)时间:120分钟分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A. B.C. D.2.已知为虚数单位,复数的共轭复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B. C. D. 24.已知的展开式的各项系数和为32,则展开式中的系数为()A. 20B. 15C. 10D. 55.设随机变量,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是()(注:若,则,)A. 7539B. 7028C. 6587D. 60386.函数在上的图象大致是()A. B.C. D.7.已知等差数列的前项和为,且,,则其公差为()A. B. C. D.8.函数的零点个数是()A. 0B. 1C. 2D. 39.某城市有连接8个小区、、、、、、、和市中心的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区前往小区,则他不经过市中心的概率是()A. B. C. D.10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为()A. 12000立方尺B. 11000立方尺C. 10000立方尺D. 9000立方尺11.已知函数是偶函数,则下列结论可能成立的是( )A. ,B. ,C.,D.,12.设椭圆的左右焦点分别为、,上下顶点分别为、,直线与该椭圆交于、两点.若,则直线的斜率为( ) A.B.C.D.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知某中学高三理科班学生共有800人参加了数学与物理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001,002,003,…,800进行编号。

2020年高考数学(理)必刷试卷4(解析版)

2020年高考数学(理)必刷试卷4(解析版)

2020年高考必刷卷(新课标卷)04数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合1|01x A x x -⎧⎫=≥⎨⎬+⎩⎭,{}2|log (3),B y y x x A ==+∈,则A B U =( ) A .(,1)[2,)-∞-+∞U B .(,1)[1,)-∞-+∞U C .[]1,2-D .(]1,2-【答案】D 【解析】 【分析】解分式不等式得集合A ,求对数函数的值域得集合B ,再由并集概念计算. 【详解】由题意101xx -≥+(1)(1)010x x x -+≥⎧⇒⎨+≠⎩(1)(1)01x x x -+≤⎧⇒⎨≠-⎩11x ⇒-<≤,(1,1]A =-,11x -<≤时,234x <+≤,21log (3)2x <+≤,(1,2]B =,∴(1,2]A B =-U . 故选:D.【点睛】本题考查集合的并集运算,考查对数函数的性质.解分式不等式要注意分母不为0. 2.已知复数1i iz +=(i 为虚数单位),则z 的虚部为( ) A .1 B .-1C .iD .i -【答案】A 【解析】 【分析】先计算出复数z ,求出共轭复数z ,再由复数的定义得结论. 【详解】21i i(1)1z i ii i+=+==-,1z i =+,其虚部为1. 故选:A . 【点睛】本题考查复数的除法运算,考查共轭复数及复数的定义.属于基础题.3.已知4log 5a =,()1216log 2b =,sin 2c =,则a ,b ,c 的大小关系是( )A .b c a <<B .c a b <<C .a b c <<D .c b a <<【答案】A 【解析】 【分析】利用换底公式化简12b =,而1,01a c ><<,利用sin y x =在[,]2ππ单调性比较c 与12的大小关系,即可求解. 【详解】()112222164log 2log 2log 212b ⎛⎫⎪⎭=== ⎝,44log 5log 41a =>=,5512<,sin 2sin ,662b c a ππ>=∴<<Q . 故选:A 【点睛】本题考查比较数的大小关系,涉及到对数换底公式、对数函数和正弦函数的单调性,属于中档题. 4.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表: 附表:参照附表,下列结论正确的是( ).A .在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”;B .在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”;C .有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”;D .有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”. 【答案】A【解析】试题分析:,故应选.考点:独立性检验5.已知函数()f x 的图象关于原点对称,且满足()()130f x f ―x ++=,且当)4(2x ∈,时,12()log (1)f x x m =--+,若(2021)1(1)2f f -=-,则m =( )A .43B .34C .43-D .34-【答案】C 【解析】 【分析】根据题意首先求出函数的周期为4,从而求出()()20211f f =;再由函数的奇偶性即可求出1(1)3f =,由(1)(3)f f =-,代入解析式即可求解.【详解】因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20211f f =; 而()()11f f -=-,由(2021)1(1)2f f -=-可得1(1)3f =;而121(1)(3)(31)3f f log m =-=--=, 解得43m =-. 故选:C 【点睛】本题主要考查函数的奇偶性和周期性求函数值以及根据函数值求参数值,属于中档题. 6.已知空间中三条不同的直线a 、b 、c 和平面α,下列结论正确的是( ) A .若a α⊥,b α⊥,则//a b B .若//a α,//b α,则//a b C .若a α⊂,//b α,则//a b D .若a c ⊥,b c ⊥,则//a b【答案】A 【解析】 【分析】利用空间中线线与线面的位置关系逐一分析各选项的正误,可得出合适的选项. 【详解】对于A 选项,若a α⊥,b α⊥,由直线与平面垂直的性质定理可知//a b ,A 选项正确; 对于B 选项,若//a α,//b α,则a 与b 平行、相交或异面,B 选项错误; 对于C 选项,若a α⊂,//b α,则a 与b 平行或异面,C 选项错误; 对于D 选项,若a c ⊥,b c ⊥,则a 与b 平行、相交或异面,D 选项错误. 故选:A. 【点睛】本题考查空间中线线位置关系的判断,可以充分利用空间中垂直、平行的判定和性质定理来判断,也可以利用模型来判断,考查推理能力,属于中等题.7.已知公差不为0的等差数列{}n a ,前n 项和为n S ,满足3110S S -=,且124,,a a a 成等比数列,则3a =( ) A .2 B .6C .5或6D .12【答案】B【解析】 【分析】将题设条件转化为基本量的方程组,求出基本量后可求3a . 【详解】设等差数列的公差为d ,则()()11211133103a d a a d a a d +-=⎧⎪⎨+=+⎪⎩ , 解得122a d =⎧⎨=⎩或150a d =⎧⎨=⎩(舍),故()322316a =+⨯-=,故选:B. 【点睛】等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题. 8.已知函数()sin()6f x x π=-,若方程4()5f x =的解为1212,(0)x x x x π<<<,则12sin()x x +=( ) A. B.2C .12D .12-【答案】B 【解析】 【分析】 由()sin()6f x x π=-且方程4()5f x =的解为1212,(0)x x x x π<<<,可知12,x x 关于直线3x π=对称,从而可得1223x x π+=,进而可得出答案. 【详解】由()sin()6f x x π=-,可知3x π=是函数的一条对称轴,又方程4()5f x =的解为1212,(0)x x x x π<<<,1223x x π+∴=,即1223x x π+=,所以12sin()x x += 故选:B 【点睛】本题考查了三角函数的对称性,需掌握住正弦函数的对称轴,属于基础题. 9.以下四个命题中,正确的是 ( )A .若1123OP OA OB =+u u u r u u u r u u u r,则,,P A B 三点共线B .若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底C .()a b c a b c ⋅⋅=⋅⋅r r r r r rD .ABC △为直角三角形的充要条件是·0AB AC =u u u r u u u r【答案】B 【解析】 【分析】A,利用向量共线定理即可判断;B,利用共面向量基本定理即可判断;C,向量的数量积运算与实数运算的区别;D ,直角三角形顶点不确定. 【详解】A 错误,115+=1236≠ ,所以,,P A B 三点不共线;B 正确,假设{},,a b b c c a +++r r r r r r 不能构成空间的基底,则存在实数λμ,使得()()a b b c c a λμ+=+++r r r r r r ,即(1)(1)()0a b c μλλμ-+--+=r rr r ,因为{},,a b c r r r 为空间的一个基底,所以,,a b c r r r不共面,则10,10,0μλλμ-=-=+=,无解,故{},,a b b c c a +++r r r r r r构成空间的另一个基底;C 错误,()|cos ,|a b c a b a b c ⋅⋅=⋅⋅⋅r r r r r r r r ;D 错误,直角边不确定. 【点睛】在实数运算中,若,a b ∈R ,则ab a b =⋅,但对于向量,a b r r 却有a b a b ⋅≤⋅r r r r ,当且仅当a b r r ∥时等号成立.这是因为|cos ,|a b a b a b ⋅=⋅⋅r r rr r r ,而cos ,1a b ≤r r . 三点,,P A B 共线,对空间任一点,(1)O OP xOA x OB =+-u u u r u u u r u u u r.10.如图,在ABC ∆中,sin sin BD B CD C =g g ,2BD DC ==2AD =,则ABC ∆的面积为( )A B C .D .【答案】B 【解析】 【分析】过点D 分别作AB 和AC 的垂线,垂足分别为,E F ,结合题干条件得到AD 为BAC ∠的平分线,根据角平分线定理得到2AB BDAC DC==,再由cos cos 0ADB ADC ∠+∠=,结合余弦定理得到2AC =,在三角形中应用余弦定理得到sin BAC ∠=. 【详解】过点D 分别作AB 和AC 的垂线,垂足分别为,E F ,由sin sin BD B CD C =g g , 得DE DF =,则AD 为BAC ∠的平分线,∴2AB BDAC DC==, 又cos cos 0ADB ADC ∠+∠=22=,解得2AC =;在ABC ∆中,(222421cos 2428BAC +-∠==⨯⨯,∴sin BAC ∠=1sin 2ABC S AB AC BAC ∆=∠=g g . 故选B.【点睛】本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.11.如图,正方体1111ABCD A B C D -中,E ,F ,M ,N 分别为BC ,1CC ,11A D ,11C D 的中点,则直线EF ,MN 所成角的大小为( )A .6π B .4π C .3π D .2π 【答案】C 【解析】 【分析】通过做平行线,得到直线EF ,MN 所成角的大小,可转化为111A C BC 与的夹角,三角形11A BC ,三边均为正方体的面对角线,是等边三角形,进而得到结果. 【详解】连接1111,,AC BC A B ,根据E ,F ,M ,N 分别为BC ,1CC ,11A D ,11C D 的中点,可得到MN是三角形111AC D 的中位线,故得到11,MN AC P 同理可得到1BC EF P ,进而直线EF ,MN 所成角的大小,可转化为111A C BC 与的夹角,三角形11A BC ,三边均为正方体的面对角线,是等边三角形,故得到111A C BC 与的夹角为.3π故答案为:C. 【点睛】这个题目考查了异面直线的夹角的求法,常见方法有:通过做平行线将异面直线转化为同一个平面的直线,进而将空间角转化为平面角. 12.已知()(),f x g x 都是定义在R 上的函数,()()()()()()()()()()()1150,0,,112xf x f fg x f x g x f x g x a g x g g -≠-<=+'=-',则关于x 的方程2502abx +=, ()0,1b ∈有两个不同的实根的概率为( ) A .35 B .25 C .15 D .12【答案】B【解析】由已知, ()()()()()()()2'''0f x f x g x f x g x g x g x ⎛⎫-=< ⎪ ⎪⎝⎭,∴函数()()xf x ag x =是减函数,∴01a <<,又()()()()1115112f f ag g a -+=+=-,解得12a =或2a =,∴12a =,方程2502abx +=有两个不等的实根,则5242502ab b ∆=-⨯=->, 25b <,又()0,1b ∈,所以205b <<,因此所求概率为225105P -==-,故选B .第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

名师精编2020年全国高考理科数学模拟试卷4+答题卡+解析

2020年全国高考模拟理科数学卷(4)考试时间120分钟 总分150分第Ⅰ卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设U =R ,A ={x |x 2-3x -4>0},B ={x |x 2-4<0},则=B A C U I )(A .{x |x ≤-1,或x ≥2}B .{x |-1≤x <2}C .{x |-1≤x ≤4}D .{x |x ≤4}2.若复数2()(1)m i mi ++是实数,则实数m 的值为( ) A. -1 B.-2 C.1 D.23.A .4163π-B .403C .8163π-D .3234. 已知某程序框图如图所示,则执行该程序后输出的结果是A .1-B .21C .1D .25. 在数列{}n a 中,12341,23,456,78910,a a a a ==+=++=+++则10a = ( ) A. 495 B.500 C.505 D.5106. ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知实数,x y 满足21010x y x y -+≥⎧⎨--≤⎩,则22x y z x ++=的取值范围为( )4A .100,3⎡⎤⎢⎥⎣⎦B .(]10,2,3⎡⎫-∞+∞⎪⎢⎣⎭UC .102,3⎡⎤⎢⎥⎣⎦D .(]10,0,3⎡⎫-∞+∞⎪⎢⎣⎭U8. 设()()2,cos sin cos cos 2a R f x x a x x x π⎛⎫∈=-+-⎪⎝⎭满足()(0)3f f π-=,求函数()f x 在11,424ππ⎡⎤⎢⎥⎣⎦上的最大值 ( ) A.1 B.2 C.3 D.9. 在R 上定义的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间[]2,1是减函数,则函数)(x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数10. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种B. 147种C. 144种D. 141种11. 已知椭圆()2222:10x y C a b a b+=>>,12,F F 为其左、右焦点,P 为椭圆C 上除长轴端点外的任一点,G 为12F PF ∆内一点,满足123PG PF PF =+u u u v u u u v u u u u v,12F PF ∆的内心为I ,且有12IG F F λ=u u v u u u u v(其中λ为实数),则椭圆C 的离心率e =( ) A .13 B .12 C .23D12. 在三棱锥A —BCD 中,AB =AC ,DB =DC ,4AB DB +=,AB ⊥BD ,则三棱锥 A —BCD 的外接球的体积的最小值为( )A. 3B. 43πC. 3D. 323π第Ⅱ卷本卷包括必考题和选考题两部分. 第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4 小题,每小题5 分.13. 若向量12,2a =,b a b ==且-,则a b =+ 。

(整理版)高考数学小题狂做冲刺训练(详细解析)

(整理版)高考数学小题狂做冲刺训练(详细解析)

高考数学小题狂做冲刺训练〔详细解析〕、选择题〔本大题共10小题,每题5分,共50分。

在每题给出的四个选项中,只有一个选项是符合题目要求的〕 1.点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.[0,2π]B.[0,2π〕∪[43π,π) C.[43π,π) D.(2π,43π]解析:∵y′=3x 2-1,故导函数的值域为[-1,+∞). ∴切线的斜率的取值范围为[-1,+∞〕. 设倾斜角为α,那么tanα≥-1. ∵α∈[0,π),∴α∈[0,2π)∪[43π,π).答案:B2.假设方程x 2+ax+b =0有不小于2的实根,那么a 2+b 2的最小值为( )A.3B.516 C.517 D.518 解析:将方程x 2+ax+b =0看作以(a,b)为动点的直线l:xa+b+x 2=0的方程,那么a 2+b 2的几何意义为l 上的点(a,b)到原点O(0,0)的距离的平方,由点到直线的距离d 的最小性知a 2+b 2≥d 2=211)1(1)100(2224222-+++=+=+++x x x x x x (x ≥2), 令u =x 2+1,易知21)(-+=u u u f (u ≥5)在[5,+∞)上单调递增,那么f(u)≥f(5)=516, ∴a 2+b 2的最小值为516.应选B. 答案:B3.国际上通常用恩格尔系数来衡量一个国家或地区人民生活水平的状况,它的计算公式为yxn =(x:人均食品支出总额,y:人均个人消费支出总额),且y =2x+475.各种类型家庭情相同的情况下人均少支出75元,那么该家庭属于( )解析:设1998年人均食品消费x 元,那么人均食品支出:x(1-7.5%)=92.5%x,人均消费支出:2×92.5%x+475,由题意,有2×92.5%x+475+75=2x+475,∴x=500. 此时,14005.462475%5.922%5.92=+⨯=x x x ≈0.3304=33.04%,应选D.答案:D4.(海南、宁夏高考,文4)设f(x)=xlnx,假设f′(x 0)=2,那么x 0等于( )2B.eC.22ln 解析:f′(x)=lnx+1,令f′(x 0)=2, ∴lnx 0+1=2.∴lnx 0=1.∴x 0=e. 答案:B5.n =log n+1 (n+2)(n∈N *).定义使a 1·a 2·a 3·…·a k 为整数的实数k 为奥运桔祥数,那么在区间[1,2 008]内的所有奥运桔祥数之和为( )A.1 004B.2 026C.4 072D.2 044解析:a n =log n+1 (n+2)=)1lg()2lg(++n n ,a 1·a 2·a 3·…·a k =2lg )2lg()1lg()2lg(4lg 5lg 3lg 4lg 2lg 3lg +=++••k k k . 由题意知k+2=22,23,…,210,∴k=22-2,23-2,…,210-2.∴S=(22+23+…+210)-2×9=20261821)21(49=---. 答案:B6.从2 004名学生中选取50名组成参观团,假设采用下面的方法选取,先用简单随机抽样法从2 004人中剔除4人,剩下的 2 000人再按系统抽样的方法进行,那么每人入选的概率〔 〕A .不全相等B .均不相等C .都相等且为002125D .都相等且为401解析:抽样的原那么是每个个体被抽到的概率都相等,所以每人入选的概率为002125. 答案:C7.将数字1,2,3,4,5,6拼成一列,记第i 个数为a i 〔i =1,2,…,6〕,假设a 1≠1,a 3≠3,5≠5,a 1<a 3<a 5,那么不同的排列方法种数为〔 〕A .18B .30C .36D .48 解析:∵a 1≠1且a 1<a 3<a 5,∴〔1〕当a 1=2时,a 3为4或5,a 5为6,此时有12种; 〔2〕当a 1=3时,a 3仍为4或5,a 5为6,此时有12种; 〔3〕当a 1=4时,a 3为5,a 5为6,此时有6种. ∴共30种. 答案:B8.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.假设从中任选3人,那么选出的火炬手的编号能组成以3为公差的等差数列的概率为〔 〕A .511 B .681 C .3061 D .4081 解析:属于古典概型问题,根本领件总数为318C =17×16×3,选出火炬手编号为a n =a 1+3〔n -1〕〔1≤n ≤6〕,a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法. 故所求概率68131617444444318=⨯⨯++=++=C P . 答案:B9.复数i 3(1+i)2等于( )A.2B.-2 C解析:i 3(1+i)2=-i(2i)=-2i 2=2. 答案:A 10.(全国高考卷Ⅱ,4)函数x xx f -=1)(的图象关于( ) A.y 轴对称 B.直线y =-x 对称 C.坐标原点对称 D.直线y =x 对称 解析: x xx f -=1)(是奇函数,所以图象关于原点对称. 答案:C、填空题〔本大题共5小题,每题5分,共25分〕11.垂直于直线2x-6y+1=0且与曲线y=x 3+3x 2-5相切的直线方程为___________________.解析:与直线2x-6y+1=0垂直的直线的斜率为k=-3,曲线y=x 3+3x 2-5的切线斜率为y ′=3x 2+6x.依题意,有y ′=-3,即3x 2+6x=-3,得x=-1.当x=-1时,y=(-1)3+3·(-1)2-5=-3.故所求直线过点(-1,-3),且斜率为-3,即直线方程为y+3=-3(x+1), 即3x+y+6=0. 答案:3x+y+6=0 12.函数13)(--=a axx f (a≠1).假设f(x)在区间(0,1]上是减函数,那么实数a 的取值范围是______________. 解析:由03)1(2)('<--=axa a x f ,⎪⎩⎪⎨⎧<->-②,0)1(2①,03a aax由①,得a <x3≤3. 由②,得a <0或a >1,∴当a =3时,f(x)在x∈(0,1)上恒大于0,且f(1)=0,有f(x)>f(1). ∴a 的取值范围是(-∞,0)∪(1,3]. 答案:(-∞,0)∪(1,3] 13.平面上三点A 、B 、C满足3||=AB ,5||=CA ,4||=BC ,那么AB CA CA BC BC AB •+•+•的值等于________________.解析:由于0=++CA BC AB ,∴)(2||||||)(2222AB CA CA BC BC AB CA BC AB CA BC AB •+•+•+++=++0)(225169=•+•+•+++=AB CA CA BC BC AB ,即可求值.答案:-2514.设一次试验成功的概率为p,进行100次独立重复试验,当p=_________________时,成功次数的标准差的值最大,其最大值为___________________________________.解析:4)2(2n q p n npq D =+≤=ξ,等号在21==q p 时成立,此时Dξ=25,σξ=5. 答案:215 15.设z 1是复数,112z i z z -=(其中1z 表示z 1的共轭复数),z 2的实部是-1,那么z 2的虚部为___________________.解析:设z 1=x+yi(x,y ∈R),那么yi x z -=1. ∴z 2=x+yi-i(x-yi)=x-y+(y-x)i. ∵x-y=-1, ∴y-x=1. 答案:1。

冲刺2020年高考数学小题狂刷卷(解析版)

冲刺2020年高考数学小题狂刷卷(解析版)

冲刺2020年高考数学小题狂刷卷一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{|20}A x x x =--≥,则R C A =( )A .(1,2)-B .[1,2]-C .(2,1)-D .[2,1]-【答案】A 【解析】 由题意2{|20}{|2A x x x x x =--≥=≥或1}x ≤-,所以{|12}R C A x x =-<<,故选A .2.双曲线222=2x y -的焦点坐标为( )A .(1,0)±B.(0) C .(0,1)± D.(0,【答案】B 【解析】由2222x y -=可得22a 2,1b ==,焦点在x 轴上,所以222a 3c b =+=,因此c =所以焦点坐标为();故选B . 3.设实数x ,y 满足约束条件330200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则z x y =+的最大值为( )A .0B .1C .2D .3【答案】D【解析】由实数x ,y 满足约束条件330200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩画出可行域如图阴影部分所示,可知当目标函数z x y =+经过点()3,0A 时取得最大值,则max 30 3.z =+= 故选D. 4.已知,,a b R ∈则“221a b +≤”是“1a b +≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】22221||1a b a b +≤⇔+≤,其表示的是如图阴影圆弧AB 部分,1a b +≤其表示的是如图阴影OAB ∆部分,所以 “221a b +≤”是“1a b +≤”的必要不充分条件.故答案选B.5.如图,网格纸是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为( )A .4B .8C .16D .20【答案】C 【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积6212S =⨯=,高为4,故该几何体的体积111241633V Sh ==⨯⨯=,故选C. 6.函数()()22ln x x f x x -=+的图象大致为( )A .B .C .D .【答案】B【解析】()f x Q 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+= ()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .故选B .7.设66016(1),x a a x a x +=+++L 则246a a a ++=( )A .31-B .32-C .31D .32【答案】C 【解析】二项式展开式的通项公式为6r r C x ,故2462466661515131a a a C C C ++=++=++=,故选C .8.如图,半径为1的扇形AOB 中,23AOB π∠=,P 是弧AB 上的一点,且满足OP OB ⊥,,M N 分别是线段,OA OB 上的动点,则•PM PN u u u u v u u u v的最大值为( )A .2BC .1 D【答案】C【解析】•PM PN u u u u v u u u v 2()()PO OM PO ON PO OM PO OM ON =+⋅+=+⋅+⋅u u u v u u u u v u u u v u u u v u u u v u u u u v u u u v u u u u v u u u v0011cos150cos12010()0()122OM OM ON =++⋅≤+⨯-+⨯-=u u u u v u u u u v u u u v ,选C .9.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D .10.已知数列{}n a 满足()*11112n n n na a n a a +++=+∈N ,则( ) A .当()*01n a n <<∈N 时,则1n n a a +> B .当()*1n a n >∈N 时,则1n n a a +<C .当112a =时,则111n n a a +++> D .当12a =时,则111n n a a +++>【答案】C 【解析】111111112n n n n n n n n n a a a a a a a a a +++++=+∴-+-=即111()(1)n n n n na a a a a ++--=. 当01n a <<时,1110n n a a +-<,故1n n a a +<,A 错误.当1n a >时,1110n n a a +->,故1n n a a +>,B 错误.对于D 选项,当1n =时,12a =,212111922a a a a +=+=<D 错误.用数学归纳法证明选项C.易知0n a >恒成立,当1n =时,21211123a a a a +=+=> 假设当n k =时成立,111k k a a +++>2121122k k a k a +++>+,当1n k =+时,222222111122211111112443426k k k k k k k k k a a a a a k a a a a +++++++++⎛⎫⎛⎫+=+=++=+++>+ ⎪ ⎪⎝⎭⎝⎭即221k k a a +++> 成立,故111n n a a +++>恒成立,得证,故答案选C . 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

等差数列—小题狂刷2020年高考数学(理)(含解析)

等差数列—小题狂刷2020年高考数学(理)(含解析)

狂刷23 等差数列1.已知{}n a 是等差数列,且25a =-,646a a =+,则1a = A .-9 B .-8 C .-7D .-42.已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S = A .2 B .7 C .14D .283.在等差数列{a n }中,a 1+a 4+q 7=45,a 2+a 5+a 8=29,则a 3+a 6+a 9等于 A .13 B .18 C .20D .224.以n ,n S T 分别表示等差数列{}{},n n a b 的前n 项和,若73n n S n T n =+,则55a b 的值为 A .7 B .214 C .378D .235.已知数列{}n a 中,3a =2,7a =1,若12n a ⎧⎫⎨⎬⎩⎭为等差数列,则11a 等于 A .1 B .12C .23D .26.在数列{a n }中,a 3=5,a n+1−a n −2=0(n ∈N ∗),若S n =25,则n = A .3 B .4 C .5D .67.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则芒种日影长为 A .1.5尺 B .2.5尺 C .3.5尺D .4.5尺8.在等差数列{a n }中,已知a 5=10,a 12>31,则公差d 的取值范围是________.9.已知等差数列{}n a 的前n 项和为n S ,若11a =,35S a =,2019m a =,则m =________. 10.已知等差数列{}n a 的前三项为245,4,377,则使得0n a ≥的n 的最大值为________.11.等差数列{}n a 中,2912142078a a a a a a ++-+-=,则9314a a -= A .8 B .6 C .4D .312.记等差数列{}n a 的前n 项和为n S .若616a =,535S =,则{}n a 的公差为A .3B .2C .-2D .-313.已知数列{a n }为等差数列,若a 1+a 7+a 13=4π,则tan(a 2+a 12)=A .3B 3C 3D .3-14.设等差数列{}n a 的前n 项和为n S ,且150S >,890a a +<,则使得0nn a S n+<最小的n 为 A .10 B .11 C .12D .1315.设{a n }是等差数列,a 2=5,a 8=11,且a n =b n+1−b n ,b 1=1,则b 11=A .59B .64C .78D .8616.设等差数列{a n }的前n 项和为S n ,若S 4≥10, S 5≤15,则a 4的最大值为A .2B .3C .4D .517.已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n √S n−1−S n−1√S n =2√S n S n−1 (n ∈N ∗且n ≥2),则a 81= A .641 B .640 C .639D .63818.已知等差数列{}n a 满足12332,40a a a =+=,则{}n a 的前12项之和为A .144-B .80C .144D .30419.若等差数列{a n }中,a 1=5,a 2+a 5=0,则{a n }中为正数的项的个数为________.20.若两个等差数列{}n a 和{}n b 的前n 项和分别是n S ,n T ,已知55n n S nT n =+,则1011912813a ab b b b +=++______. 21.已知数列{}n a 是首项114a =,公差23d =-的等差数列,则使20n n a a +<成立的n 的值是_________. 22.设n S 为等差数列{}n a 的前n 项和,若755,55a S ==-,则n nS 的最小值为_________.23.设正数数列{a n }的前n 项和是S n ,若{a n }和{√S n }都是等差数列,且公差相等,则a 1+d =__________.24.(2019年高考全国I 卷理数)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B .310n a n =- C .228n S n n =-D .2122n S n n =- 25.(2018新课标全国I 理科)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =A .12-B .10-C .10D .1226.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4D .827.(2017浙江)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件28.(2016浙江理科)如图,点列{A n },{B n }分别在某锐角的两边上,且,,表示点P 与 Q 不重合.若为的面积,则A .是等差数列B .是等差数列C .是等差数列D .是等差数列29.(2019年高考全国III 卷理数)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 30.(2019年高考北京卷理数)设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为___________.31.(2019年高考江苏卷)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________.112n n n n A A A A +++=2,n n A A n +≠∈*N 1122,,n n n n n n B B B B B B n ++++=≠∈*N (P Q ≠),n n n n d A B S =1n n n A B B +△{}n S 2{}n S {}n d 2{}n d1.已知{}n a 是等差数列,且25a =-,646a a =+,则1a = A .-9 B .-8 C .-7D .-4【答案】B【解析】{}n a Q 是等差数列,且25a =-,646a a =+,64364a a d -∴==-, 则128a a d =-=-. 故选B .2.已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S = A .2 B .7 C .14D .28【答案】C【解析】5632a a a +=+Q ,44422a d a d a d ∴++=++-,解得42a =,()177477142a a S a +∴===.故选C.3.在等差数列{a n }中,a 1+a 4+q 7=45,a 2+a 5+a 8=29,则a 3+a 6+a 9等于 A .13 B .18 C .20 D .22【答案】A【解析】设等差数列{a n }的公差为d , 由a 1+a 4+q 7=45,a 2+a 5+a 8=29,得(a 2+a 5+a 8)−(a 1+a 4+q 7)=29−45=−16,即3d =−16, 由(a 3+a 6+a 9)−(a 2+a 5+a 8)=3d =−16, 得a 3+a 6+a 9=(a 2+a 5+a 8)+(−16)=29−16=13. 故选A .4.以n ,n S T 分别表示等差数列{}{},n n a b 的前n 项和,若73n n S nT n =+,则55a b 的值为 A .7 B .214 C .378D .23【答案】B【解析】因为数列{}{},n n a b 是等差数列,所以55955997921==9934a a Sb b T ⨯==+. 故选B .5.已知数列{}n a 中,3a =2,7a =1,若12n a ⎧⎫⎨⎬⎩⎭为等差数列,则11a 等于 A .1 B .12C .23D .2【答案】C【解析】由数列12n a ⎧⎫⎨⎬⎩⎭为等差数列,得公差73112217316a a d -==-, 所以()1171111131172216244a a =+⨯-=+=, 所以1123a =,故选C . 6.在数列{a n }中,a 3=5,a n+1−a n −2=0(n ∈N ∗),若S n =25,则n = A .3 B .4 C .5D .6【答案】C【解析】因为a n+1−a n −2=0(n ∈N ∗),所以12n n a a d +-==, 所以数列{a n }是等差数列,所以{a 1+4=5na 1+n(n−1)2⋅2=25 ,则a 1=1,n =5. 故选C.7.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则芒种日影长为 A .1.5尺 B .2.5尺 C .3.5尺D .4.5尺【答案】B【解析】设这十二个节气日影长依次成等差数列{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===,所以59.5a =,由题知1474331.5a a a a ++==,所以410.5a =, 所以公差541d a a =-=-,所以1257 2.5a a d =+=. 故选B .8.在等差数列{a n }中,已知a 5=10,a 12>31,则公差d 的取值范围是________. 【答案】d >3【解析】由等差数列的通项公式可得:5127a d a +=, ∴10+7d >31,解得d >3, 故公差d 的取值范围是d >3.9.已知等差数列{}n a 的前n 项和为n S ,若11a =,35S a =,2019m a =,则m =________. 【答案】1010【解析】根据题意,设等差数列{}n a 的公差为d , 则()32133S a a d ==+,又由11a =,35S a =,得()3114d d +=+,故2d =, 则()11212019m a a m d m =+-=-=,解可得1010m =. 故答案为1010.10.已知等差数列{}n a 的前三项为245,4,377,则使得0n a ≥的n 的最大值为________. 【答案】8【解析】Q 等差数列{}n a 的前三项为2454377,,, 则254577d =-=-. ()555515777n a n n ⎛⎫∴=+--=-+ ⎪⎝⎭.当0n a ≥时,即555077n -+≥,解得8n ≤. 故n 的最大值为8.11.等差数列{}n a 中,2912142078a a a a a a ++-+-=,则9314a a -= A .8 B .6 C .4 D .3【答案】D【解析】由题意,设等差数列{}n a 的公差为d ,则()291214207112202108a a a a a a a d a d ++-+-=+=+=,即1104a d +=, 则()()9311111382103444a a a d a d a d -=+-+=+=, 故选D .12.记等差数列{}n a 的前n 项和为n S .若616a =,535S =,则{}n a 的公差为A .3B .2C .-2D .-3【答案】A【解析】由等差数列的性质可知,155355352a a S a +=⨯==,解得37a =,故公差63363a ad -==-. 故选A .13.已知数列{a n }为等差数列,若a 1+a 7+a 13=4π,则tan(a 2+a 12)=A .3B 3C 3D .3-【答案】D【解析】∵数列{a n }为等差数列且a 1+a 7+a 13=4π,∴a 1+a 7+a 13=3a 7=4π,解得a 7=4π3, ∴tan(a 2+a 12)=tan (2a 7)=tan 8π3=tan (3π﹣π3)=﹣tan π3=﹣√3.故选D .14.设等差数列{}n a 的前n 项和为n S ,且150S >,890a a +<,则使得0nn a S n+<最小的n 为 A .10 B .11 C .12D .13【答案】B【解析】因为15890,0S a a >+<, 所以1111515140,2150,2a d a d +⨯⨯>+< 即11170,2150,0,0,a d a d a d +>+<><当10n =时,10111011272722()01022714S aa a a d a +=+>+-=>, 当11n =时,11111215011Sa a d +=+<.所以选B .15.设{a n }是等差数列,a 2=5,a 8=11,且a n =b n+1−b n ,b 1=1,则b 11=A .59B .64C .78D .86【答案】D【解析】设{a n }的公差为d ,则a 1+d =5,a 1+7d =11,∴a 1=4,d =1, ∴a n =n +3,又a n =b n+1−b n ,b 1=1,∴n >1时,b n =b 1+(b 2−b 1)+(b 3−b 2)+⋅⋅⋅+(b n −b n−1)()()12116112n n n a a a --+=+++⋅⋅⋅+=+,∴b 11=86,故选D .16.设等差数列{a n }的前n 项和为S n ,若S 4≥10, S 5≤15,则a 4的最大值为A .2B .3C .4D .5【答案】C【解析】因为S 4=2(a 2+a 3),所以a 2+a 3≥5, 又S 5=5a 3,所以a 3≤3,而a 4=3a 3−(a 2+a 3),故a 4≤4, 当且仅当a 2=2,a 3=3时等号成立, 所以a 4的最大值为4. 故选C .17.已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n √S n−1−S n−1√S n =2√S n S n−1 (n ∈N ∗且n ≥2),则a 81= A .641 B .640 C .639 D .638 【答案】B【解析】因为S n √S n−1−S n−1√S n =2√S n S n−1,所以√S n −√S n−1=2,即{√S n }为等差数列,首项为1,公差为2,所以√S n =1+2(n −1)=2n −1,则S n =(2n −1)2, 因此a 81=S 81−S 80=1612−1592=640. 故选B .18.已知等差数列{}n a 满足12332,40a a a =+=,则{}n a 的前12项之和为A .144-B .80C .144D .304 【答案】D【解析】因为23123643408a a a d d d +=+=+=⇒=-,所以408n a n =-.所以408,5408840,5n n n a n n n -⎧=-=⎨->⎩,,… 则前12项之和为5(320)7(856)8022430422⨯+⨯++=+=. 故选D.19.若等差数列{a n }中,a 1=5,a 2+a 5=0,则{a n }中为正数的项的个数为________. 【答案】3【解析】∵等差数列{a n }中,a 1=5,a 2+a 5=0,∴5+d +5+4d =0, ∴d =﹣2,∴a n =5﹣2(n ﹣1)=﹣2n +7, a 1>0,a 2>0,a 3>0, n ≥4时,a n <0,则{a n }中为正数的项的个数为3. 故答案为3.20.若两个等差数列{}n a 和{}n b 的前n 项和分别是n S ,n T ,已知55n n S nT n =+,则1011912813a ab b b b +=++______. 【答案】4【解析】由等差数列的性质可得:()()12010101201111120912813120120120202202a a a a a a a a b b b b b b b b b b b b +++=+==++++++ 20205204205S T ⨯===+. 故答案为4.21.已知数列{}n a 是首项114a =,公差23d =-的等差数列,则使20n n a a +<成立的n 的值是_________. 【答案】21【解析】∵数列{}n a 是首项为14,公差为23-的等差数列, ()2244141333n a n n ⎛⎫∴=+-⨯-=-+ ⎪⎝⎭,()222442444168176023333999n n a a n n n n +⎛⎫⎡⎤∴=-+-++=-+ ⎪⎢⎥⎝⎭⎣⎦,20n n a a +<Q ,2416817600999n n ∴-+<,整理,得n 2−42n +440<0, 解得20<n <22,∵n ∈N ∗,∴n =21. 故答案为21.22.设n S 为等差数列{}n a 的前n 项和,若755,55a S ==-,则n nS 的最小值为_________.【答案】343-【解析】由题意可得,()11655255a d a d +=⎧⎨+=-⎩,解得a 1=﹣19,d =4,∴()211942212n n n S n n n -+⨯=-=-,∴32221n nS n n -=,设32()221f x x x =-,()6(7)f x x x '=-,当0<x <7时,()f x '<0,函数是减函数; 当x >7时,()f x '>0,函数是增函数; 所以n =7时,n nS 取得最小值343-. 故答案为343-.23.设正数数列{a n }的前n 项和是S n ,若{a n }和{√S n }都是等差数列,且公差相等,则a 1+d =__________.【答案】34【解析】设数列{a n }的首项为a 1,公差为d , ∵数列{a n }的前n 项和是S n ,∴√S 1=√a 1,√S 2=√2a 1+d,√S 3=√3a 1+3d , 又{√S n }也是公差为d 的等差数列,则√S 2=√2a 1+d =√a 1+d ,两边平方得2a 1+d =a 1+2d √a 1+d 2,① √S 3=√3a 1+3d =√a 1+2d ,两边平方得3a 1+3d =a 1+4d √a 1+4d 2,② ②-①得:a 1=−2d +2d √a 1+3d 2,③ 把③代入①,得d (2d −1)=0,∴d =0或12d =, 当d =0时,a 1=0,不合题意; 当12d =时,代入③,解得114a =. 1113424a d ∴+=+=,故答案为34.24.(2019年高考全国I 卷理数)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B .310n a n =- C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩, ∴25n a n =-,24n S n n =-.故选A .【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断.25.(2018新课标全国I 理科)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =A .12-B .10-C .10D .12【答案】B【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-. 故选B .【名师点睛】该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d,的关系,从而求得结果.26.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=, 联立112724,61548a d a d +=⎧⎨+=⎩解得4d =.故选C .【秒杀解】因为166346()3()482a a S a a +==+=,即3416a a +=, 则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =. 故选C .【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.27.(2017浙江)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >, 所以“d >0”是“S 4 + S 6>2S 5”的充要条件. 故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.(2016浙江理科)如图,点列{A n },{B n }分别在某锐角的两边上,且,,表示点P 与 Q 不重合.若为的面积,则A .是等差数列B .是等差数列C .是等差数列D .是等差数列【答案】A【解析】表示点到对面直线的距离(设为)乘以长度的一半,即,由题目中条件可知的长度为定值,那么需要知道的关系式.由于和两个垂足构成了直角梯形,那么,其中为两条线的夹角,即为定值,则,把n 换成n +1可得, 作差后:,为定值,所以是等差数列. 故选A.29.(2019年高考全国III 卷理数)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因为213a a =,所以113a d a +=,即12a d =,112n n n n A A A A +++=2,n n A A n +≠∈*N 1122,,n n n n n n B B B B B B n ++++=≠∈*N (P Q ≠),n n n n d A B S =1n n n A B B +△{}n S 2{}n S {}n d 2{}n d n S n A n h 1n n B B +112n n n n S h B B +=1n n B B +n h 1,n A A 11sin n n h h A A θ=+⋅θ1111(sin )2n n n n S h A A B B θ+=+⋅111111(sin )2n n n n S h A A B B θ+++=+⋅1111(sin )2n n n n n n S S A A B B θ+++-=⋅{}n S所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.30.(2019年高考北京卷理数)设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为___________. 【答案】 0,10-【解析】等差数列{}n a 中,53510S a ==-,得32,a =- 又23a =-,所以公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0, 所以n S 的最小值为4S 或5S ,即为10-.【名师点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.31.(2019年高考江苏卷)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.。

函数的性质—小题狂刷2020年高考数学(理)(含解析)

狂刷04 函数的基本性质1.下列判断正确的是A .函数22)(2--=x xx x f 是奇函数B .函数2()1f x x x =-C .函数2211,02()11,02x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩是偶函数D .函数1)(=x f 既是奇函数又是偶函数2.函数3e e x xy x x--=-的图象大致是A .B .C .D .3.函数y =21xx -+,x ∈(m ,n ]最小值为0,则m 的取值范围是 A .(1,2) B .(–1,2).C .[1,2)D .[–1,2)4.已知()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞上为增函数,则()()()243f f f --,,的大小顺序是A .()()()234f f f -<<-B .()()()423f f f -<-<C .()()()432f f f -<<-D .()()()324f f f <-<-5.若()f x ,()g x 均是定义在R 上的函数,则“()f x 和()g x 都是偶函数”是“()()f x g x ⋅是偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件6.若函数()222,0,0x x x f x x ax x ⎧-≥=⎨-+<⎩为奇函数,则实数a 的值为A .2B .2-C .1D .1-7.关于函数()11f x x =--的下列结论,错误的是 A .图象关于1x =对称B .最小值为1-C .图象关于点()11-,对称D .在(]0-∞,上单调递减 8.设函数e ()(12e 1)x x f x g x -++=+,若()f x 是奇函数,(3)1g =,则(3)g -=A .-1B .1C .-5D .59.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则()()()()1232019f f f f +++⋅⋅⋅+=A .2019B .0C .1D .−110.定义运算:x ▽y =,0,0x xy y xy ≥⎧⎨<⎩,例如:3▽4=3,(-2)▽4=4,则函数f (x )=x 2▽(2x -x 2)的最大值为_______________.11.已知函数|4|y x m =-在区间[)1,+∞上单调递增 ,则m 的取值范围为_______________. 12.设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意的x ∈[a ,a +2],不等式()()31f x a f x +≥+恒成立,则实数a 的取值范围是_______________.13.下列函数中,既是偶函数,又在区间[]01,上单调递增的是 A .cos y x =B .sin y x =C .12xy ⎛⎫= ⎪⎝⎭D .3y x =-14.若函数(2()sin ln 14f x x ax x=⋅+的图象关于y 轴对称,则实数a 的值为A .2B .4C .2±D .4±15.已知()fx 为定义在()0,+∞上的函数,若对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x --<,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c ===,则 A .a b c << B .b a c << C .c a b <<D .c b a <<16.函数()f x 的定义域为(32,3)a a --,若(1)f x +为偶函数,且当(2,5)x a a ∈时,()x f x a =,则A .13(3)()()32f a f f a a << B .31(3)()()23f a f a f a<< C .13()(3)()32f f a f a a << D .13()()(3)32f f a f a a << 17.已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有()()21f x f x +=-,当30,2x ⎛⎫∈ ⎪⎝⎭时,()()2log 3f x x =+,则()()20182019f f +=A .3B .2C .2-D .3-18.已知函数)32()log12f x x x x =++,若()7()f a a =∈R ,则()f a -=_______________.19.已知函数31()=2+e exxf x x x --,其中e 是自然数对数的底数,若()()21+20f a f a -≤,则实数a 的取值范围是_______________.20.已知()f x 是定义在R 上的函数,()11f =,且对任意x ∈R 都有:()()55f x f x +≥+与()1f x +≤()1f x +成立,若()()1g x f x x =+-,则()2017g =_______________.21.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .22.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .23.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则2sin cos ++x xx xA .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)24.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为25.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .26.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .5027.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]28.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.29.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.1.下列判断正确的是A .函数22)(2--=x xx x f 是奇函数B .函数2()1f x x x =-C .函数2211,02()11,02x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩是偶函数D .函数1)(=x f 既是奇函数又是偶函数 【答案】B【解析】对于A ,22)(2--=x xx x f 的定义域为2x ≠,不关于原点对称,不是奇函数.对于B ,2()1f x x x =-2()1f x x x -=--对于C ,函数的定义域为(,0)(0,)-∞+∞U ,关于原点对称.当0x >时,21()()12f x x -=---= 21(1)()2x f x -+=-;当0x <时,2211()()11()22f x x x f x -=-+=+=-.综上可知,函数()f x 是奇函数.对于D ,1)(=x f 的图象为平行于x 轴的直线,不关于原点对称,不是奇函数. 故选B.【名师点睛】对于C ,判断分段函数的奇偶性时,应分段说明()f x -与()f x 的关系,只有当对称的两段上都满足相同的关系时,才能判断其奇偶性.若D 项中的函数是()0f x =,且定义域关于原点对称,则函数既是奇函数又是偶函数.2.函数3e e x xy x x--=-的图象大致是A .B .C .D .【答案】A【解析】令()3e e x x f x x x --=-,则()()f x f x -=,故函数()3e e x xf x x x--=-为偶函数,其图象关于y 轴对称,排除C 选项;由30x x -≠,解得0x ≠且1x ≠±,()0.50.51e e 0.500.1250.5f -=<-,排除D 选项; ()10101e e 101100010f -=>-,故可排除B 选项. 所以本小题选A.【名师点睛】本小题主要考查函数图象的识别,主要通过函数的奇偶性和函数图象上的特殊点进行排除,属于基础题.求解时,根据奇偶性和函数的特殊点,对选项进行排除,由此得出正确选项. 3.函数y =21xx -+,x ∈(m ,n ]最小值为0,则m 的取值范围是 A .(1,2) B .(–1,2).C .[1,2)D .[–1,2)【答案】D 【解析】函数y =2313111x x x x x ---==+++–1,且在x ∈(–1,+∞)时,函数y 是单调递减函数,在x =2时,y 取得最小值0;根据题意x ∈(m ,n ]时y 的最小值为0,∴m 的取值范围是–1≤m <2. 故选D .4.已知()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞上为增函数,则()()()243f f f --,,的大小顺序是A .()()()234f f f -<<-B .()()()423f f f -<-<C .()()()432f f f -<<-D .()()()324f f f <-<-【答案】A【解析】本题主要考查函数的性质.因为()f x 为定义在(,)-∞+∞上的偶函数,且()f x 在[0,)+∞上为增函数,所以()()()()4422f f f f -=-=,,又0234<<<,所以()()()234f f f <<,所以()()()234f f f -<<-. 故选A .5.若()f x ,()g x 均是定义在R 上的函数,则“()f x 和()g x 都是偶函数”是“()()f x g x ⋅是偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】若()f x 和()g x 都是偶函数,则()()()() f x f x g x g x -=-=,,()()()() f x g x f x g x -⋅-=⋅,即()()f x g x ⋅是偶函数,充分性成立;当()f x x =,()2g x x =时,()()f x g x ⋅是偶函数,但是()f x 和()g x 都不是偶函数,必要性不成立,∴“()f x 和()g x 都是偶函数”是“()()f x g x ⋅是偶函数”的充分而不必要条件,故选A.【名师点睛】本题主要考查函数的奇偶性以及充分条件与必要条件的定义,利用奇偶性的定义证明充分性成立,利用特殊函数证明必要性不成立,从而可得结果.属于中档题.判断充分条件与必要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质判断,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题的等价性判断;对于范围问题也可以转化为包含关系来处理.6.若函数()222,0,0x x x f x x ax x ⎧-≥=⎨-+<⎩为奇函数,则实数a 的值为A .2B .2-C .1D .1-【答案】B【解析】()f x Q 为奇函数,()()f x f x ∴-=-,当0x <时,0x ->,()()()2222f x f x x x x x ∴=--=-+=--,又0x <时,()2f x x ax =-+,2a ∴=-.本题正确选项为B.【名师点睛】本题考查利用函数奇偶性求解函数解析式的问题,属于基础题.根据函数为奇函数,求得当0x <时()f x 的解析式,与已知的解析式对应即可得到结果.7.关于函数()11f x x =--的下列结论,错误的是 A .图象关于1x =对称B .最小值为1-C .图象关于点()11-,对称 D .在(]0-∞,上单调递减 【答案】C【解析】由题意可得:()21111x x f x x x x -≥⎧=--=⎨-<⎩,,, 绘制函数图象如图所示,观察函数图象可得:图象关于1x =对称,选项A 正确; 最小值为1-,选项B 正确;图象不关于点()11-,对称,选项C 错误; 在(]0-∞,上单调递减,选项D 正确. 故选C.【名师点睛】本题主要考查分段函数的性质,函数图象的应用,函数的性质等知识,意在考查学生的转化能力和计算求解能力.求解时,将函数的解析式写成分段函数的形式,然后结合函数图象考查函数的性质即可.8.设函数e ()(12e 1)x x f x g x -++=+,若()f x 是奇函数,(3)1g =,则(3)g -=A .-1B .1C .-5D .5【答案】C【解析】因为()f x 是奇函数,所以f (-x )=-f (x ),所以e 1e 122e ()()1e 1x x x x g x g x ----+=++-+---,所以g (-x )=-g (x )-4,所以g (-3)=-g (3)-4=-5, 故选C .【名师点睛】本题主要考查函数的基本性质,利用函数的奇偶性的定义求函数值. 9.已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则()()()()1232019f f f f +++⋅⋅⋅+=A .2019B .0C .1D .−1【答案】B【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4. 又()f x 为奇函数,()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==,∴()()()()12340f f f f +++=.()()()()()()()()()123201*********f f f f f f f f f ∴+++⋅⋅⋅+=⨯+++-⎡⎤⎣⎦0=.本题正确选项为B.【名师点睛】本题考查函数奇偶性和周期性的综合应用问题,关键是能够得到函数的周期,利用周期性和奇偶性求解出一个周期内的函数值的和.即根据()()2f x f x +=-可先推导出()f x 的周期为4,再利用函数为奇函数且周期为4求出()()()()12340f f f f +++=,最后根据周期性可求解出结果.10.定义运算:x ▽y =,0,0x xy y xy ≥⎧⎨<⎩,例如:3▽4=3,(-2)▽4=4,则函数f (x )=x 2▽(2x -x 2)的最大值为_______________. 【答案】4【解析】依题意得,当x 2(2x -x 2)≥0,即0≤x ≤2时,f (x )=x 2的最大值是22=4; 当x 2(2x -x 2)<0,即x <0或x >2时,f (x )=2x -x 2=-(x -1)2+1<0. 因此,函数f (x )的最大值是4.故填4.【名师点睛】本题主要考查不等式的解法与函数的性质等基础知识,意在考查考生的运算求解能力与推理能力.11.已知函数|4|y x m =-在区间[)1,+∞上单调递增 ,则m 的取值范围为_______________.【答案】(,4]-∞【解析】由于4()44=4()4mx m x y x m m m x x ⎧-≥⎪⎪=-⎨⎪-<⎪⎩,则函数4y x m =-的增区间为,4m ⎡⎫+∞⎪⎢⎣⎭,减区间为,4m ⎛⎫-∞ ⎪⎝⎭,所以要使函数4y x m =-在区间[)1,+∞上单调递增,则14m≤,解得:4m ≤, 故m 的取值范围为(,4]-∞.【名师点睛】本题主要考查分段函数的单调性,关键是掌握初等函数单调性的判断,属于基础题.求解时,先去绝对值,得到函数|4|y x m =-为分段函数,求出单调区间,即可得到m 的取值范围. 12.设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意的x ∈[a ,a +2],不等式()()31f x a f x +≥+恒成立,则实数a 的取值范围是_______________.【答案】(,5]-∞-【解析】本题考查函数的性质.当0x ≥时,()2f x x =,此时()f x 单调递增;而()f x 是定义在R 上的奇函数,所以()f x 在R 上单调递增;若()()31f x a f x +≥+,则31x a x +≥+,即21a x ≥+在[2]x a a ∈+,上恒成立,即()221a a ≥++恒成立,解得5a ≤-,故实数a 的取值范围是(,5]-∞-.13.下列函数中,既是偶函数,又在区间[]01,上单调递增的是 A .cos y x =B .sin y x =C .12xy ⎛⎫= ⎪⎝⎭D .3y x =-【答案】B【解析】根据题意,依次分析选项:对于A ,cos y x =,为余弦函数,在[]01,上为减函数,不符合题意; 对于B ,sin y x =,为偶函数,且在[]01,上,其解析式为sin y x =,单调递增,符合题意; 对于C ,12xy ⎛⎫= ⎪⎝⎭,为偶函数,且在[]01,上,其解析式为12x y =(),单调递减,不符合题意; 对于D ,3y x =-,为奇函数,不符合题意. 故选B .【名师点睛】本题考查函数的奇偶性与单调性的判断,关键是掌握函数奇偶性、单调性的定义,属于基础题.根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.判断函数的奇偶性,首先求函数的定义域,若定义域不关于原点对称,则函数不具有奇偶性,此时不必求f (-x ).当定义域关于原点对称时,若证明函数具有奇偶性,应运用定义,将f (-x )与f (x )进行比较,有时不易变形时,可直接计算f (-x )±f (x ),判断其是否为零;若证明函数不具有奇偶性,只需找到一组相反量的函数值,不满足f (-a )=f (a )和f (-a )=-f (a )即可. 14.若函数(2()sin ln 14f x x ax x=⋅+的图象关于y 轴对称,则实数a 的值为A .2B .4C .2±D .4±【答案】C【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(2()ln 14g x ax x =++也为奇函数. 而(2()ln 14g x ax x-=-+,故((22()()ln 14ln 140g x g x ax x ax x -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选C.【名师点睛】本小题主要考查函数的奇偶性,考查两个函数相乘的奇偶性判断,属于基础题.求解时,根据函数()f x 为偶函数,sin x 为奇函数,判断出(2()ln 14g x ax x =++为奇函数,根据奇函数的定义列方程,求得a 的值即可.15.已知()f x 为定义在()0,+∞上的函数,若对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x --<,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c ===,则A .a b c <<B .b a c <<C .c a b <<D .c b a <<【答案】B【解析】因为()f x 是定义在()0,+∞上的函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x --<,故()()121221011f x f x x x x x -<-,∴函数()f x x 是()0,+∞上的增函数, ∵0.222122,00.21,log 52<<<<>,∴20.220.22log 5<<,∴b a c <<. 故选B.【名师点睛】本题主要考查函数的单调性,比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.求解时,由()()2112120x f x x f x x x --<可知函数()f x x是()0,+∞上的增函数,结合自变量的大小比较函数值(即实数a ,b ,c 的大小)即可.16.函数()f x 的定义域为(32,3)a a --,若(1)f x +为偶函数,且当(2,5)x a a ∈时,()x f x a =,则A .13(3)()()32f a f f a a << B .31(3)()()23f a f a f a<< C .13()(3)()32f f a f a a << D .13()()(3)32f f a f a a << 【答案】A【解析】若(1)f x +为偶函数,则(1)(1)f x f x -+=+,故函数()f x 的图象关于直线1x =对称. 又函数()f x 的定义域为(32,3)a a --,则32321a a -+-=⨯,解得12a =, 故当5(1,)2x ∈时,()1()2xf x =单调递减,又()33()2f a f =,1224()()(2)()3333f f f f a ==-=,3335()()(2)()2444f a f f f ==-=, 所以345()()()234f f f <<,即13(3)()()32f a f f a a <<,故选A . 17.已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有()()21f x f x +=-,当30,2x ⎛⎫∈ ⎪⎝⎭时,()()2log 3f x x =+,则()()20182019f f +=A .3B .2C .2-D .3-【答案】C【解析】由()()21f x f x +=-得:()()3f x f x +=,即()f x 是周期为3的周期函数,()()()()()()2018201967331673310f f f f f f ∴+=⨯-+⨯=-+, ()f x Q 为R 上的奇函数,()()211log 42f f ∴-=-=-=-且()00f =, ()()201820192f f ∴+=-.本题正确选项为C.【名师点睛】本题考查利用抽象函数的周期性和奇偶性求解函数值的问题,关键是能够将自变量通过周期性和奇偶性转化为已知区间内的值,从而利用已知区间的解析式来进行求解.求解时,根据()()21f x f x +=-可得函数周期为3,从而将所求式子变为()()10f f -+,利用函数的奇偶性的性质和在30,2x ⎛⎫∈ ⎪⎝⎭时的解析式即可求得结果. 18.已知函数)32()log12f x x x x =++,若()7()f a a =∈R ,则()f a -=_______________.【答案】7【解析】易知f (x )的定义域为R ,且关于原点对称, ∵f (﹣x ))32()log()12x x x =--++32log 21x x x ⎛⎫=-+++ ()32log12x x x =++=f (x ),∴f (x )是R 上的偶函数, ∴f (﹣a )=f (a )=7. 故答案为7.【名师点睛】本题考查了函数奇偶性的判断,关键是对对数式的真数分子有理化,属基础题.求解时,先求出f (x )的定义域,然后判断f (x )的奇偶性,根据奇偶性可得答案. 19.已知函数31()=2+e exxf x x x --,其中e 是自然数对数的底数,若()()21+20f a f a -≤,则实数a 的取值范围是_______________. 【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】因为()()312e ex x f x x x f x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f x x x --'=-++≥-+⋅≥,所以数()f x 在R 上单调递增, 又()()2120f a f a -+≤,即()()221f a f a ≤-,所以221aa ≤-,即2210a a +-≤,解得112a -≤≤,故实数a 的取值范围为11,2⎡⎤-⎢⎥⎣⎦.20.已知()f x 是定义在R 上的函数,()11f =,且对任意x ∈R 都有:()()55f x f x +≥+与()1f x +≤()1f x +成立,若()()1g x f x x =+-,则()2017g =_______________.【答案】1【解析】本题考查函数的性质与求值.因为()()1g x f x x =+-,所以()()1g x x f x +-=. 所以()()()()()()5515515g x x f x f x g x x +++-=+≥+=+-+,()()()()()()1111111g x x f x f x g x x +++-=+≥+=+-+,所以()()5g x g x +≥,()()1g x g x +≤,所以()()()()()()54321g x g x g x g x g x g x ≤+≤+≤+≤+≤+, 所以()()1g x g x +=,所以()g x 是以1为周期的周期函数. 所以()()()201711111g g f ==+-=.【解题技巧】推出()g x 是以1为周期的周期函数,是解决此题的关键.21.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.2sin cos ++x xx x22.【2019年高考全国Ⅲ卷理数】函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .【名师点睛】本题通过判断函数的奇偶性,排除错误选项,通过计算特殊函数值,作出选择.本题注重基础知识、基本计算能力的考查.23.【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C【解析】()f x Q 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.24.【2018年高考全国Ⅱ卷理数】函数()2e e x xf x x--=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x --≠-==-∴Q 为奇函数,舍去A ; ()11e e 0f -=->Q ,∴舍去D ;()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x x x ---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C. 因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 25.【2018年高考浙江】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A,B;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D .【名师点睛】先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可判断选择.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的周期性.26.【2018年高考全国Ⅱ卷理数】已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()123f f f ++()50f ++=LA .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(),-∞+∞的奇函数,且()()11f x f x -=+,所以()()()()()113114f x f x f x f x f x T +=--∴+=-+=-∴=,,,因此()()()()()()()()()()1235012123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦L ,因为()()()()3142f f f f =-=-,,所以()()()()12340f f f f +++=,因为()()200f f ==,从而()()()()()1235012f f f f f ++++==L .故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.27.【2017年高考全国Ⅰ卷理数】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3].故选D.【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立.28.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】3-【解析】由题意知()f x 是奇函数,且当0x <时,()e ax f x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【名师点睛】本题主要考查函数的奇偶性,对数的计算.29.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】(]1;,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e x x f x a -=+为奇函数,则()(),f x f x -=-即()e e e e x x x x a a --+=-+,即()()1e e 0x x a -++=对任意的x 恒成立,则10a +=,得1a =-. 若函数()e e xx f x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立, 即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.。

排列与组合-小题狂刷2020年高考数学(理)(含解析)

狂刷49 排列与组合1.有5 个空盒排成一排,要把红、黄两个球放入空盒中,要求一个空盒最多只能放入一个球,并且每个球左右均有空盒,则不同的放入种数为A.8B.C.6D.2.六位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有A.480种B.360 种C.240 种D.120 种3.用数字0,1,2,3,4,5 可以组成没有重复数字的四位奇数的个数是A.72B.144C.150D.1804.黄冈市有很多处风景名胜,仅4A 级景区就有10 处,某单位为了鼓励职工好好工作,准备组织5名优秀的职工到就近的三个景区:龟峰山、天堂寨、红安红色景区去旅游,若规定每人限到一处旅游,且这三个风景区中每个风景区至少安排1 人,则这5名职工的安排方法共有A.90 种B.60 种C.210 种D.150 种5.为迎接双流中学建校80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行6 个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有A.240 种B.188种C.156种D.120 种6.某公司有五个不同部门,现有4 名在校大学生来该公司实习,要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为A.40B.60C .120D .2407.已知 5 辆不同的白颜色和 3 辆不同的红颜色汽车停成一排,则白颜色汽车至少2 辆停在一起且红颜色的汽车互不相邻的停放方法有A . 1880 种B . 1440 种C .720种D .256 种8.6 个高矮互不相同的人站成两排,后排每个人都高于站在他前面的同学的概率为1B .611C .D .8 129.甲、乙、丙、丁、戊 5名学生进行投篮比赛,决出了第1至第 5名的不同名次,甲、乙两人向裁判询问成绩,裁判对甲说 : “很遗憾,你和乙都未拿到冠军 .”对乙说 : “你当然不是最差的 . ”根据裁判的回答, 5 人的名次排列不同的情况共有A . 54 种B . 108 种C .210种D .96 种10.从字母 a,b,c,d,e, f 中选出 4个字母排成一排, 其中一定要选出 a 和b ,并且它们必须相邻 (a 在 b 前面 ),共有排列方法 _________ 种.11.沿着一条笔直的公路有 9 根电线杆, 现要移除 2根,且被移除的电线杆之间至少还有 2 根电线杆被保留,则不同的移除方法有 _______ 种 .12.蚌埠市大力发展旅游产业,蚌埠龙子湖风景区、博物馆、张公山公园、花鼓灯嘉年华、禾泉农庄、 淮河闸水利风景区都是 4A 风景区,还有荆涂山风景区、大明御温泉水世界、花博园等也都是不错的 景点,小明和朋友决定利用三天时间从以上 9个景点中选择 6个景点游玩, 每个景点用半天 (上午、 下午各游玩一个景点) ,且至少选择 4 个 4A 风景区,则小明这三天的游玩有 __________________________ 种不同的安排 方式(用数字表示) .13 .有 5 名师范大学的毕业生,其中学数学的两人,学语文的两人,学英语的一人,现将这 5 名毕业生1 A .4分配到A、B、C三所学校,每所学校至少一人,若 A 校不招收同一学科的毕业生,则不同的分配方法共有B.132 种A .148 种14 .某班准备从含有甲、乙的7 名男生中选取4 人参加4×100 米接力赛,要求甲、乙两人同时参加,且他们在赛道上顺序不能相邻,则不同的排法种数是A.720 B.20C.240 D.12015.在一次抽奖活动中,一个箱子里有编号为1至10 的十个号码球(球的大小、质地完全相同,但编号不8同),里面有n 个号码为中奖号码,若从中任意取出4个小球,其中恰有1个中奖号码的概率为8,21 那么这10个小球中,中奖号码小球的个数n 为A.2 B.3C.4 D.516.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这 6 人的入园顺序排法种数为A .48B .36C.24 D.1217.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为A .33B .36C.40 D.4818.2019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3 名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5 元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75 元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为A .20.5 B.21 元C.21.5元D.22 元19 .如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3 是三种不同的颜色,金色1、金色2 是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3 有且仅有两种相邻,则不同的涂色方案有B.240 种C.144种D.288 种20 .某校从8 名教师中选派4 名同时去4 个边远地区支教(每地1 名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有A .900 种B .600 种C.300种D.150 种21.某中学连续14 年开展“走进新农村”社会实践活动,让同学们开阔视野,学以致用,展开书本以外的思考,进行课堂之外的磨练.今年该中学有四个班级到三个活动基地.每个活动基地至少分配1 个班级,则A、B 两个班级被分到不同活动基地的情况有 _________ 种.22 .已知甲盒中有红、黑、白三种颜色的球各 3 个,乙盒中有黄、黑、白三种颜色的球各2 个(两盒中每个球除颜色外都相同).从两个盒子中各取1 个球,则取出的2 个球颜色不同的概率是 _________ (结果用最简分数表示).23.【2018 年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如30 7 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是11 A. B .12 1411 C. D .15 1824.【2017年高考全国Ⅱ卷理数】安排3 名志愿者完成4项工作,每人至少完成1项,每项工作由1 人完成,则不同的安排方式共有A.12 种B.18 种C.24 种25 .【2018 年高考全国Ⅰ卷理数】从2 位女生,4 位男生中选3 人参加科技比赛,且至少有1 位女生入选,则不同的选法共有_____________ 种.(用数字填写答案)26.【2018 年高考江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2 名学生去参加活动,则恰好选中2 名女生的概率为 ____________ .27.【2018年高考浙江卷)从1,3,5,7,9中任取2 个数字,从0,2,4,6中任取2 个数字,一共可A .120 种D.36种以组成 ___________ 个没有重复数字的四位数.(用数字作答)28.【2017 年高考浙江卷)从6 男2女共8 名学生中选出队长1 人,副队长1 人,普通队员2 人组成4 人服务队,要求服务队中至少有1 名女生,共有 __________________ 种不同的选法.(用数字作答)29.【2017 年高考天津卷理数】用数字1,2,3,4,5,6,7,8,9 组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有__________________ 个.(用数字作答)1.有5 个空盒排成一排,要把红、黄两个球放入空盒中,要求一个空盒最多只能放入一个球,并且每个球左右均有空盒,则不同的放入种数为A.8 B.2C.6 D.4【答案】B【解析】很明显两个球只能放在第二个和第四个盒子,故不同的放入种数为A22 2 ,故选B .【名师点睛】本题主要考查排列数公式及其应用,属于基础题.求解时,首先确定放球的方法,然后利用排列数公式即可求得满足题意的放球的种数.2.六位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有A.480种B.360 种C.240 种D.120 种【答案】A【解析】因为6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,所以甲安排在除去开头与结尾的中间的4 个位置,有C14 个选择,剩余的元素与位置进行全排列有 A 55,所以不同的演讲次序有C14 A55 480 种.故选A .【名师点睛】本题考查排列、组合以及简单的计数原理的应用,其中遵循特殊元素优先考虑的原则是解题的关键,考查计算能力.求解本题时,直接从中间的4 个演讲的位置,选1 个给甲,其余全排列即可.3.用数字0,1,2,3,4,5 可以组成没有重复数字的四位奇数的个数是A.72 B.144C.150 D.180【答案】B【解析】根据题意,符合奇数的个位数字只能从1,3,5 中选取,组成没有重复数字的四位奇数分三步:第一步,排个位,共有 C 13 种方法;第二步,排千位,共有 C 14 种方法; 第三步,排百、十位,共有 A 24 种方法,1 1 2所以可组成 C3C 4A 4 144个四位奇数,故选 B.【名师点睛】本题主要考查简单排列组合和计数原理的应用 只能从 1,3,5 中选取;千位数字去掉个位数字选用的和 位数字 .4.黄冈市有很多处风景名胜,仅 4A 级景区就有 10 处,某单位为了鼓励职工好好工作,准备组织 5名优 秀的职工到就近的三个景区:龟峰山、天堂寨、红安红色景区去旅游,若规定每人限到一处旅游,且 这三个风景区中每个风景区至少安排 1 人,则这 5名职工的安排方法共有A .90种 C . 210 种【答案】 D解析】把 5 名优秀的职工分成三组,共两类: 3、1、 1,2、2、1,【名师点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题 .求解本题时,把 5 名优秀的职工分成三组,共两类: 3、1、1,2、 2、1,再分组分配即可求出.有关排列组合的综 合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一 定多读题才能挖掘出隐含条件 .解题过程中要首先分清 “是分类还是分步 ”、“是排列还是组合 ”,在应用 分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率 .5.为迎接双流中学建校 80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行 6 个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽 谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目 的不同安排方案共有B .188种.求解时,根据题意,符合奇数的个位数字0 还剩下四个数字中选择,最后再排百、B .60 种 D .150 种根据分组公式共有3 1 1 2 2 1 C 5C 2C 1 C 5C 3C 1A22 A 22分组方法,共有C 53C 12C 11 A22C5A C 223C 1 A 33 150种安排方法,故选 D .A . 240 种C.156种D.120 种【答案】D【解析】第一类:当甲在第1位时,第一步,丙、丁捆绑成的整体有4 种方法,第二步,丙、丁内部排列用A 22 种方法,第三步,其他三人共A33种方法,共4A 22A33 4 2 6 48 种方法;第二类:当甲在第2 位时,第一步,丙、丁捆绑成的整体有3种方法,后面两步与第一类方法相同,共3A 22A333 2 6 36种方法;第三类:当甲在第3 位时,与第二类相同,共36种方法.总计,完成这件事的方法数为N 48 36 36 120 .故选D.【名师点睛】本小题主要考查实际问题中的方案安排种数问题,考查分类加法计数原理和分步乘法计数原理,考查捆绑法,属于基础题.求解时,根据甲在第1,2,3 这三个位置进行分类讨论,按“先排甲,再排丙丁,再排其他三个”,结合分步乘法计数原理以及分类加法计数原理求得不同安排方案.6.某公司有五个不同部门,现有4 名在校大学生来该公司实习,要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为A.40 B.60C.120 D.240【答案】B【解析】此问题可分为两步求解,第一步将四名大学生分为两组,由于分法为2,2,考虑到重复一半,故分组方案应为1C24种,2第二步将此两组大学生分到5 个部门中的两个部门中,不同的安排方式有A52,故不同的安排方案有1C24A52 60种.245故选B.【名师点睛】本题考查排列组合及简单计数问题,解题的关键是理解事件“某公司共有5 个部门,有4 名大学毕业生,要安排到该公司的两个部门且每个部门安排 2 名”,将问题分为两步来求解.7.已知5 辆不同的白颜色和3 辆不同的红颜色汽车停成一排,则白颜色汽车至少2 辆停在一起且红颜色的汽车互不相邻的停放方法有A . 1880 种B . 1440 种空,3 辆不同的红颜色汽车插空共 A 33种排法, 由分步计数原理得共 A 35A 22A 22A 33 1440 种. 故选 B.【名师点睛】本题主要考查排列中的相邻与不邻问题,常用捆绑与插空法解决,应用了分步计数原 理,理解题意是解题的关键,属于中档题.求解本题时,先从 5 辆白色汽车中选 3 辆全排列后视为 一个整体, 再将剩余 2 辆白色汽车全排列后视为一个整体, 然后将这两个整体全排列, 共有 3 个空, 3 辆不同的红颜色汽车插空排列即可.8.6 个高矮互不相同的人站成两排,后排每个人都高于站在他前面的同学的概率为1B .61 D .1290 1 所以所求概率 P 6 ,故选 C . A 6 8【名师点睛】本题考查了古典概型求概率,以及排列和组合,本题的关键是满足条件的排列看成 6 个 人均分成 3 组,然后 3 组再排列 .9.甲、乙、丙、丁、戊 5名学生进行投篮比赛,决出了第1至第 5名的不同名次,甲、乙两人向裁判询问成绩,裁判对甲说 : “很遗憾,你和乙都未拿到冠军 .”对乙说 : “你当然不是最差的 . ”根据裁判的回答, 5 人的名次排列不同的情况共有A . 54 种B . 108 种C .210种D .96 种C .720种 【答案】 BD .256 种解析】由题意知,白颜色汽车按 3,2分两组,先从 5 辆白色汽车选 3辆全排列共 A 53种排法, 再将剩余 2 辆白色汽车全排列共2 A 22 种排法,再将这两个整体全排列,2 A 22 种排法,排完后有3 个A .C .答案】 C解析】后排每个人都高于站在他前面的同学的站法数为C 26C 24CA 33 90,总的基本事件个数是 A 66 ,答案】A【解析】第一名不是甲和乙,则只能是丙、丁、戊三人中某一个,有C13种选法,而乙不是最差的,则乙只可能是第二、三、四名,有C31种可能,再将剩下的三人排成一列,依次插入即可,由分步乘113法计数原理可知,共有C13C13A 33 = 54 种不同的情况.故选A.【名师点睛】本题主要考查排列、组合与简单的计数问题,解决此类问题的关键是弄清完成一件事,是分类完成还是分步完成,是有顺序还是没有顺序,像这种特殊元素与特殊位置的要优先考虑.求解本题时,甲、乙不是第一名且乙不是最后一名,乙的限制最多,故先排乙,有3 种情况;再排甲,也有3 种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理得到结果.10.从字母a,b,c,d,e, f 中选出4个字母排成一排,其中一定要选出 a 和b ,并且它们必须相邻(a在b前面),共有排列方法 _________ 种.【答案】36【解析】由于ab已经选出,故再从剩余的4 个字母中选取2 个,方法有C24 6 种,再将这2 个字母和整体ab 进行排列,方法有A33 6种,根据分步计数原理求得所有的排列方法共有6 636 种,故答案为36.【名师点睛】本题主要考查排列与组合及两个基本原理的应用,属于中档题.求解时,从剩余的4 个字母中选取2个,再将这2 个字母和整体ab进行排列,根据分步计数原理求得结果.11.沿着一条笔直的公路有9 根电线杆,现要移除2根,且被移除的电线杆之间至少还有2 根电线杆被保留,则不同的移除方法有 _______ 种.【答案】21【解析】把6 根电线杆放好,7 个空,选择两个放入需要移除的电线杆,这样这两根需要移除的电线杆中间至少有一根,然后再把余下一根放到这两根中间去,所以有C27 21 种方法,故答案为21.【名师点睛】本题考查了排列组合在实际生活中的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题.求解本题时,把6 根电线杆放好,7 个空选择两个放入需要移除的电线杆,这样这两根需要移除的电线杆中间至少有一根,然后再把余下一根放到这两根中间去,问题得以解决.12.蚌埠市大力发展旅游产业,蚌埠龙子湖风景区、博物馆、张公山公园、花鼓灯嘉年华、禾泉农庄、 淮河闸水利风景区都是 4A 风景区,还有荆涂山风景区、大明御温泉水世界、花博园等也都是不错的 景点,小明和朋友决定利用三天时间从以上 9个景点中选择 6个景点游玩, 每个景点用半天 (上午、 下午各游玩一个景点) ,且至少选择 4 个 4A 风景区,则小明这三天的游玩有 __________________________ 种不同的安排 方式(用数字表示) .【答案】 46080 【解析】分三种情况:①选择 4 个 4A 景区,有 C 64C 32A 6632400 (种); ②选择 5 个 4A 景区,有 C 56C 13A 66 12960 (种 ); ③选择 6 个 4A 景区,有 C 66A 66 720 (种), 故共有 32400+12960+720=46080 (种 ).名师点睛】本题考查排列组合,要做到不重复、不遗漏,属于基础题 .求解时,先选景区,再进行排列,即可得出答案 .13 .有 5 名师范大学的毕业生,其中学数学的两人,学语文的两人,学英语的一人,现将这【解析】 A 校招收 1 人,则分配方法有 2A 校招收 2 人,则分配方法有 (C 5211A 校招收 3 人,则分配方法有 (1 C 12综上,共有 70 48 8 126 种,故选 C . 【名师点睛】本题考查分组分配计数问题,考查综合分析求解能力,属较难题.求解时,根据 A 校招收人数分类讨论,再根据分类计数原理求解 .14 .某班准备从含有甲、乙的 7 名男生中选取 4 人参加 4×100 米接力赛,要求甲、乙两人同时参加,且5 名毕业生法共有A . 148 种BC .126种D【答案】 CA 校不招收同一学科的毕业生,则不同的分配方 132 种 84 种C 15 (C 14A 22 C 24) 70 种;1)C 3A 2 48 种; C 12)A 22 8种.分配到 A 、B 、C 三所学校,每所学校至少一人,若他们在赛道上顺序不能相邻,则不同的排法种数是A .720 C .240【答案】 D解析】选出除了甲、乙之外的另外两个人并进行排列有 A 52 种,将甲、乙插入这两个人之间 A 23 种,则不同的排法种数为 A 25A 32120. 故选 D.名师点睛】相离问题插空法:对于不能相邻的元素,可以先将其他元素排好,再将所指定的不相邻 的元素插到它们的空隙及两端位置 .求解本题时,利用插空法,先选出除了甲、然后将甲、乙插入这两个人之间的空隙中,进而可以得到答案n (10﹣n )(9﹣n )(8﹣n )= 480( n ∈N *),解得 n =4.【名师点睛】本题考查了古典概型的概率公式的应用,考查了计数原理及组合式公式的运算,属于 中档题.求解时,利用古典概型列出恰有 1 个中奖号码的概率的方程,解方程即可. (2)排列组合一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题 缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法 .16.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这 6 人的入园顺序排法种数为A . 48B . 20 D . 120乙之外的另外两个人,15.在一次抽奖活动中,一个箱子里有编号为 1至10 的十个号码球(球的大小、 质地完全相同,但编号不 同),里面有 n 个号码为中奖号码,若从中任意取出 4 个小球, 其中恰有 81个中奖号码的概率为 ,21那么这 10个小球中,中奖号码小球的个数 n 为A .2B .C .4D .答案】 C解析】依题意,从 10 个小球中任意取出 4 个小球,其中恰有1 个中奖号码的概率为 8 ,则21821C 1n C 130 n ,C 140 ,所以 故选 C .B . 36C .24D . 1214【答案】 C【解析】先排首尾有 2 种,然后将两个小孩捆绑起来共有 2 种,那么再将小孩这个新的整体和妈妈 们排列共有 A 33种,因此一共有 4A 33=24 种,故选 C.17.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为A . 33B . 36C .40D . 48【答案】 B【解析】由题意,先从剩余的三人中选取两人,排在队伍的两端, 再排含有甲、乙的三个人,共有 C 32A22A 33 3 2 6 36种不同的排法,故选B .【名师点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合 问题,往往是两个原理及排列组合问题交叉应用才能解决问题,现从剩余的三人中选取两人,排在 队伍的两端,再排含有甲、乙的三个人,即可得到答案.解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清 “是分类还 是分步 ”、 “是排列还是组合 ”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏, 这样才能提高准确率.在某些特定问题上,也可充分考虑 “正难则反 ”的思维方式.18. 2019年 7月 1日迎来了我国建党 98周年, 6名老党员在这天相约来到革命圣地之一的西柏坡 .6名老党员中有 3 名党员当年在同一个班,他们站成一排拍照留念时,要求同班的 满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片 0.5 元(不含过塑费) ,且有一半 的照片需要过塑, 每张过塑费为 0.75 元.若将这些照片平均分给每名老党员 (过塑的照片也要平均分) 则每名老党员需要支付的照片费为A . 20.5C . 21.5元 【答案】 B 解析】利用捆绑法可求得照片的总数为 A 33A 44 144,144 0.5 72 0.75 则每名老党员需要支付的照片费为144 0.5 72 0.7521元 .6【名师点睛】本题考查排列组合的应用,考查应用意识与解决实际问题的能力党员需要支付的照片费用,需求出照片的总费用,为此又需求出照片的总数,根据排列组合知识可3 名党员站在一起,且B . 21 元D . 22 元.求解时,要求每名老同选法;法,所以不同的选派方案共有 (10+15) A 44 600 种.求出照片的总数.19.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色 1、金色 2,其中黄色 1、黄色 2、黄色 3 是三种不同的颜色,金色 1、金色 2 是两种不同的颜色,要求红色不在两端,黄色 1、黄色 2、黄色 3 有且仅有两种相邻,则不同的涂色方案A . 120 种 C .144种答案】 D解析】不考虑红色的位置,黄色 1、黄色 2、黄色 3 有且仅有两个相邻的涂色方案有2 23 2C 3A 2 A 3 A 4 432 种,这种情况下,红色在左右两端的涂色方案有2 2 1 2 2C 32A 22 C 12 A 22 A 23 144种,从而所求的结果为 432 144 288 种. 故选 D .名师点睛】本小题主要考查涂色问题,考查相邻问题、不在两端的排列组合问题的求解策略,考 查对立事件的方法,属于中档题 .求解时,首先计算出 “黄色 1、黄色 2、黄色 3 有且仅有两个相邻的 涂色方案 ”数,然后计算出 “红色在左右两端,黄色 1、黄色 2、 黄色 3 有且仅有两个相邻的涂色方案 ” 数,用前者减去后者,求得题目所求不同的涂色方案总数20 .某校从 8 名教师中选派 4 名同时去 4 个边远地区支教(每地名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有A . 900 种B .600 种C .300种D .150 种答案】解析】 第一类,甲去,则丙一定去,乙一定不去,再从剩余的5 名教师中选 2 名,有 C 52 10 种不第二类, 甲不去,则丙一定不去,乙可能去也可能不去,从6 名教师中选 4 名,有 C 64 15 种不同选D .288种故选B.【名师点睛】求解本题时,分两步进行,先从8 名教师中选出4 名,因为甲和乙不同去,甲和丙只能同去或同不去,所以可按选甲和不选甲分成两类,由分类计数原理可得这一步的情况数目,再把四名老师分配去4 个边远地区支教,对四名教师进行全排列即可,最后,由分步计数原理,计算可得答案.(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.21.某中学连续14 年开展“走进新农村”社会实践活动,让同学们开阔视野,学以致用,展开书本以外的思考,进行课堂之外的磨练.今年该中学有四个班级到三个活动基地.每个活动基地至少分配1 个班级,则A、B 两个班级被分到不同活动基地的情况有 _________ 种.【答案】30【解析】根据题意,分2 步进行分析:(1)将四个班级分成3组,要求A,B 两个班级不分到同一组,有C42 1 5种分组方法;3(2)将分好的三组全排列,安排到三个活动基地,有A33 6种情况,则有5 6 30种不同的情况,故填30.【名师点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.22 .已知甲盒中有红、黑、白三种颜色的球各 3 个,乙盒中有黄、黑、白三种颜色的球各 2 个(两盒中每个球除颜色外都相同).从两个盒子中各取1 个球,则取出的2 个球颜色不同的概率是 _________ (结果用最简分数表示).【答案】79【解析】甲盒中有红、黑、白三种颜色的球各3 个,乙盒中有黄、黑、白三种颜色的球各 2 个(两盒中每个球除颜色外都相同).从两个盒子中各取1 个球,基本事件总数n 9 6 54 ,取出的2 个球颜色不同包含的基本事件个数m C13C16C13C14C13C1442 ,则取出的2个球颜色不同的概率是P m 42 7.。

高三数学理小题狂做(4)

高三理科数学小题狂做〔4〕一、选择题〔本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〕1、假设集合x2x2,230xxx,那么〔〕A.3B.0C.0,2D.0,32、假设复数1bi2i是纯虚数〔i是虚数单位,b是实数〕,那么b〔〕11A.2B.C.2D.223、阅读如下图的程序框图,运行相应的程序,假设输入x的值为1,那么输出的S的值是〔〕A.64B.73C.512D.5854、棱长为2的正方体挖去一个几何体后的三视图如下图,那么剩余局部的体积是〔〕A.823 B. 8C.82D.3 2 35、sin4x,那么sin2x的值等于〔〕45A.825B.725C.825D.725xy106、实数x,y满足xy0,假设zx2ya的最小值x0是2,那么实数a的值是〔〕A.0B.32C.2D.17、等比数列a的前n项和为n S,nS,12S,23S成等差数列,那么数列a n的公比是3〔〕A.1B.1C.2D.423598、a、b表示两条不同的直线,,表示两个不同的平面,那么以下命题正确的选项是〔〕A.假设//,a//,b//,那么a//b B.假设a,b,a//b,那么//C.假设a,b,,那么a//b D.假设a,b,ab,那么9、曲线yxsinx在点,22处的切线与x轴、直线x所围成的三角形的面积是〔〕A.22B.2C.22D.122 210、正方形的四个顶点分别为0,0,1,0,1,1,C0,1,点D,分别在线段C,上运动,且D,设D与交于点G,那么点G的轨迹方程是〔〕A. 2yx〔0x1〕B.xy1y〔0y1〕C.yx1x〔0x1〕D. 2y1x〔0x1〕111、设fx是R上以2为周期的奇函数,当x0,1时,,那么fxfxlog21x在区间1,2上是〔〕A.增函数,且fx0B.增函数,且fx0C.减函数,且fx0D.减函数,且fx012、F1,F2是椭圆和双曲线的公共焦点,是它们的一个公共点,且F1F2 3 ,记椭圆和双曲线的离心率分别为e,e2,那么11ee12的最大值是〔〕A.3B.433C.2D.233二、填空题〔本大题共4小题,每题5分,共20分.〕13、假设向量1,1,,0,那么.n114、假设x的二项展开式中前三项的系数成等差数列,那么常数n的值是.2x15、右面茎叶图是甲、乙两人在5次综合测评中成绩〔所有成绩取整数〕的茎叶图,其中一个数字被污损,那么甲的平均成绩超过乙的平均成绩的概率是.16、以下命题,错误的有.①假设31231fxxaxx没有极值点,那么2a4;②1mxfxx3 在区间3,上单调,那么1m;3③假设函数lnxfxm有两个零点,那么xm1e;④fxlogx〔0a1〕,k,m,nR且不全等,那么akmmnknffffkfmfn.222高三理科数学小题狂做〔4〕参考答案一、选择题〔本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〕题号123456789101112答案BCBADCBDACAD二、填空题〔本大共4小题,每题5分,总分值20分.〕13、214、815、45 16、①②③。

高三理科数学小题狂做4

高三理科数学小题狂做(4)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}22x x M =-≤≤,{}230x x x N =-=,则MN =( )A .{}3B .{}0C .{}0,2D .{}0,32、若复数()()12bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2-B .12-C .2D .123、阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出的S 的值是( ) A .64B .73C .512D .5854、棱长为2的正方体挖去一个几何体后的三视图如图所示,则剩余部分的体积是( )A .283π-B .83π-C .82π-D .23π 5、已知4sin 45x π⎛⎫-= ⎪⎝⎭,则sin 2x 的值等于( )A .825B .725C .825-D .725-6、已知实数x ,y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若2z x y a =++的最小值是2,则实数a 的值是( )A .0B .32C .2D .1-7、等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则数列{}n a 的公比是( )A .12B .13C .25D .498、已知a 、b 表示两条不同的直线,α,β表示两个不同的平面,则下列命题正确的是( )A .若//αβ,//a α,//b β,则//a bB .若a α⊂,b β⊂,//a b ,则//αβC .若a α⊥,b β⊥,αβ⊥,则//a bD .若a α⊥,b β⊥,a b ⊥,则αβ⊥ 9、曲线sin y x x =在点,22ππ⎛⎫- ⎪⎝⎭处的切线与x 轴、直线x π=所围成的三角形的面积是( )A .22πB .2πC .22πD .()2122π+10、已知正方形的四个顶点分别为()0,0O ,()1,0A ,()1,1B ,()C 0,1,点D ,E 分别在线段C O ,AB 上运动,且D O =BE ,设D A 与OE 交于点G ,则点G 的轨迹方程是( )A .2y x =(01x ≤≤) B .()1x y y =-(01y ≤≤) C .()1y x x =-(01x ≤≤) D .21y x =-(01x ≤≤)11、设()f x 是R 上以2为周期的奇函数,已知当(]0,1x ∈时,()21log 1f x x=-,则()f x 在区间()1,2上是( )A .增函数,且()0f x <B .增函数,且()0f x >C .减函数,且()0f x <D .减函数,且()0f x >12、已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12F F 3π∠P =,记椭圆和双曲线的离心率分别为1e ,2e ,则121e e 的最大值是( ) A .3B .433C .2D .233二、填空题(本大题共4小题,每小题5分,共20分.) 13、若向量()1,1OA =,OA =OB ,0OA⋅OB =,则AB =.14、若12nx x ⎛⎫+ ⎪⎝⎭的二项展开式中前三项的系数成等差数列,则常数n 的值是.15、右面茎叶图是甲、乙两人在5次综合测评中成绩(所有成绩取整数)的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是. 16、以下命题,错误的有.①若()()32131f x x a x x =+-++没有极值点,则24a -<<;②()13mx f x x +=+在区间()3,-+∞上单调,则13m ≥; ③若函数()ln x f x m x =-有两个零点,则1m e<;④已知()log a f x x =(01a <<),k ,m ,R n +∈且不全等,则()()()222k m m n k n f f f f k f m f n +++⎛⎫⎛⎫⎛⎫++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.高三理科数学小题狂做(4)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBADCBDACAD13、2 14、8 15、4516、①②③高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高三理科数学小题狂做(4)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、若集合{}
22x x M =-≤≤,{
}
2
30x x x N =-=,则M N =I ( )
A .{}3
B .{}0
C .{}0,2
D .{}0,3 2、若复数()()12bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( )
A .2-
B .12-
C .2
D .1
2
3、阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出的S 的值是( )
A .64
B .73
C .512
D .585
4、棱长为2的正方体挖去一个几何体后的三视图如图所示,则剩余
部分的体积是( )
A .283π-
B .83π-
C .82π-
D .23
π 5、已知4sin 45x π⎛
⎫-= ⎪⎝
⎭,则sin 2x 的值等于( )
A .825
B .725
C .825-
D .725
-
6、已知实数x ,y 满足1000x y x y x -+≥⎧⎪
+≥⎨⎪≤⎩
,若2z x y a =++的最小值
是2,则实数a 的值是( )
A .0
B .3
2
C .2
D .1-
7、等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则数列{}n a 的公比是
( )
A .
12 B .13 C .25 D .49
8、已知a 、b 表示两条不同的直线,α,β表示两个不同的平面,则下列命题正确的是( ) A .若//αβ,//a α,//b β,则//a b B .若a α⊂,b β⊂,//a b ,则//αβ C .若a α⊥,b β⊥,αβ⊥,则//a b D .若a α⊥,b β⊥,a b ⊥,则αβ⊥
9、曲线sin y x x =在点,22ππ⎛⎫
-
⎪⎝⎭
处的切线与x 轴、
直线x π=所围成的三角形的面积是( ) A .22π B .2π C .22π D .()2122
π+
10、已知正方形的四个顶点分别为()0,0O ,()1,0A ,()1,1B ,()C 0,1,点D ,E 分别在
线段C O ,AB 上运动,且D O =BE ,设D A 与OE 交于点G ,则点G 的轨迹方程是( )
A .2
y x =(01x ≤≤) B .()1x y y =-(01y ≤≤)
C .()1y x x =-(01x ≤≤)
D .21y x =-(01x ≤≤) 11、设()f x 是R 上以2为周期的奇函数,已知当(]0,1x ∈时,()21
log 1f x x
=-,则()f x 在区间()1,2上是( )
A .增函数,且()0f x <
B .增函数,且()0f x >
C .减函数,且()0f x <
D .减函数,且()0f x >
12、已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12F F 3
π
∠P =,记椭
圆和双曲线的离心率分别为1e ,2e ,则12
1
e e 的最大值是( ) A .3 B .
433 C .2 D .23
3
二、填空题(本大题共4小题,每小题5分,共20分.)
13、若向量()1,1OA =u u u r ,OA =OB u u u r u u u r ,0OA⋅OB =u u u r u u u r ,则AB =u u u r

14、若12n
x x ⎛
⎫+ ⎪⎝
⎭的二项展开式中前三项的系数成等差数列,则常数n 的值是 .
15、右面茎叶图是甲、乙两人在5次综合测评中成绩(所有成
绩取整数)的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是 . 16、以下命题,错误的有 .
①若()()3
2
131f x x a x x =+-++没有极值点,则24a -<<;
②()13mx f x x +=
+在区间()3,-+∞上单调,则1
3
m ≥; ③若函数()ln x f x m x =-有两个零点,则1
m e
<;
④已知()log a f x x =(01a <<),k ,m ,R n +∈且不全等,则
()()()222k m m n k n f f f f k f m f n +++⎛⎫⎛⎫⎛⎫++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
. 2016高三理科数学小题狂做(4)参考答案
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
B
C
B
A
D
C
B
D
A
C
A
D
13、2 14、8 15、4
5
16、①②③。

相关文档
最新文档