地铁铝合金车体轻量化设计与结构设计
城轨车辆车体结构

表面处理技术
表面预处理
去除车体表面的油污、锈蚀等杂质,确保表面处理质量。
喷涂工艺
采用先进的喷涂设备和工艺,确保涂层均匀、附着力强、耐腐蚀性 好。
表面装饰
根据设计要求,对车体表面进行装饰处理,如贴膜、喷绘等。
质量检测与评估方法
无损检测
采用射线、超声、磁粉等 无损检测方法,对车体焊 缝进行内部缺陷检测。
刚度。
满足强度要求
对关键承载部位进行强度校核,确 保车体在各种工况下都能安全可靠 地运行。
考虑疲劳强度
针对车体在运行过程中受到的交变 载荷,进行疲劳强度设计和评估。
耐撞性设计考虑
能量吸收结构
在车体前端设置能量吸收区域, 通过塑性变形吸收碰撞能量,保
护乘客安全。
防爬装置
在车体侧面设置防爬装置,防止 在侧面碰撞时车辆相互攀爬,降
现状
目前,城轨车辆车体结构已经实现了轻量化、高强度、耐腐 蚀等目标。同时,为了满足不同城市的需求,车体结构也呈 现出多样化的特点,如A型车、B型车、C型车等。
未来趋势与挑战
未来趋势
未来城轨车辆车体结构将继续向轻量化、高强度、节能环保等方向发展。同时, 随着新材料、新工艺的不断涌现,车体结构的设计和制造将更加精细化和个性化 。
低事故严重性。
紧急疏散通道
确保在碰撞事故发生后,乘客能 够迅速安全地疏散到车外。
04 关键部件及连接技术
车门系统
车门类型
01
包括塞拉门、内藏门、外挂门等,不同类型的车门具有不同的
开启方式和结构特点。
车门驱动方式
02
主要有气动、电动和人力驱动三种方式,现代城轨车辆多采用
电动驱动方式。
车门控制系统
浅谈铝合金在轨道交通中的应用

浅谈铝合金在轨道交通中的应用铝合金在轨道交通领域的应用是一项长期受到关注的技术。
它在轨道交通中的广泛应用,包括高铁、地铁、有轨电车等,都展现了其独特的优势和价值。
本文将就铝合金在轨道交通中的应用进行探讨,着重介绍其优势、现状和未来发展趋势。
一、铝合金在轨道交通中的应用优势轻量化: 铝合金具有较低的密度和良好的强度,因此在轨道交通中可以大幅减轻车辆自重,有利于降低能耗和减少磨损,同时提高运行效率和安全性。
耐腐蚀: 铝合金具有良好的耐腐蚀性能,可以在恶劣的环境下保持长期稳定的性能,这使其在地铁、高铁等密闭环境下的应用更为适宜。
成型加工性能好: 铝合金易于成型加工,可以适应各种车辆结构需求,提高车辆设计的灵活性和多样性。
节能减排: 利用铝合金替代传统材料,如钢材,车辆重量减轻可带来降低动力消耗、减少排放的效果,有助于节能减排。
二、铝合金在高铁领域的应用铝合金在高铁领域得到了广泛的应用。
高铁列车以高速、大载客量、运行稳定著称,而铝合金正是其“减重”之选。
高铁车体及部分结构件采用铝合金制造,不仅减轻了车辆自重,提高了运行速度和载客量,还增强了车辆的整体抗腐蚀和使用寿命。
同时,铝合金的可回收再利用特性也符合高铁领域可持续发展的要求。
三、铝合金在地铁领域的应用在地铁领域,铝合金同样发挥着重要作用。
地铁车辆需要应对密闭环境、潮湿腐蚀等问题,而铝合金的优异耐腐蚀性能使其成为地铁车辆的理想选择。
通过采用铝合金材料,地铁车辆的自重得以降低,利于提高整体运行效率和降低能耗,同时也能够提高车辆的整体安全性。
四、铝合金在有轨电车领域的应用在有轨电车领域,铝合金的应用也日益普及。
相比于传统的钢制车辆,铝合金车辆在减轻自重的同时,也可提高车辆的运行速度和舒适性。
此外,铝合金具有优异的导电性能,有利于电车的性能提升和整车电气系统的稳定运行。
五、未来展望随着轨道交通行业的不断发展和技术进步,铝合金在该领域的应用前景依然广阔。
未来,随着铝合金材料制造工艺的不断完善和成本的进一步降低,铝合金在轨道交通领域的应用将进一步扩大,有望实现更多创新和突破。
单元4 城市轨道交通车辆-3车体

4.3.2 车门
1、客室车门
(2)客室车门的结构形式
按照驱动系统动力来源的不同,分为: 电控气动式车门 电控电动式车门
按照车门的运动轨迹以及与车体的安装方式,分为: 内藏门 外挂门 塞拉门 外摆门
4.3.2 车门
广州地铁一号线车门
1、客室车门
(2)客室车门的结构形式 电控气动式车门
内藏门具有如下特点: ① 驱动机构占用车辆上的空间小; ② 质量较轻; ③ 手动开、关门所需力量较小。
4.3.2 车门
1、客室车门
(2)客室车门的结构形式
外挂门
外挂门与内藏门的主要区别在于门叶和悬 挂机构始终位于侧墙的外侧,车门传动机 构原理与内藏门完全相同。
外挂门具有如下特点: ① 与其他形式的车门相比,采用外挂门形式
③ 警告灯/蜂鸣器:在每扇客室车门的上方车体内外部各装设有一个警告灯, 开关门时警告灯将会亮并闪烁。
④ 障碍物探测:关门防夹(关门时的障碍物探测),开门时障碍物探测。
4.3.2 车门
1、客室车门
(3)客室车门的控制
乘务员钥匙开关
⑤ 车门切除: 一旦运营中有车门开关故障时,驾驶员 可以应是逆时针,车内切除应是顺时针, 否则会造成切除机构损坏)。
4.3.3 车内其他设施
3、照明系统
照明系统属于车辆辅助负载的 一部分,主要分为司机室照明、头 尾灯、运行灯、客室照明、车侧灯 五大部分。除车侧灯外,其他部分 均由司机室控制开关独立控制。
4.3.3 车内其他设施 3、照明系统
(1)客室车门; (2)司机室车门; (3)司机室通道门; (4)紧急疏散门。
4.3.2 车门
按功能分为: 客室侧门 客室端门 驾驶室侧门 驾驶室后端门 紧急疏散门
动车组车体的技术原理

动车组车体的技术原理
动车组车体的技术原理主要包括以下几个方面:
1. 车体结构:动车组车体采用钢结构和铝合金结构相结合的设计,以实现车体的轻量化和强度提升。
车体由多个车体段组成,每个车体段之间通过铰链连接,使得整个车体可以在曲线轨道上进行弯曲,增强了车体的弯曲耐力。
2. 转向架:动车组车体上装有转向架,用于支撑和转向车辆。
转向架由轮对、弹簧悬挂系统和缓冲装置等组成。
其中,轮对通过轴承和齿轨之间的啮合来传递力量,弹簧悬挂系统可以减震和支撑车体,缓冲装置可以吸收车体与轮对之间的冲击力。
3. 接触网供电系统:动车组车体上装有接触网供电系统,用于从接触网上获取电力,并通过集电装置将电力传输至车辆的电动机。
该系统包括上、下弓等组件,能够与接触网建立稳定的接触,并通过电缆将电力传输至车辆内部。
4. 空气动力学设计:动车组车体的外形设计遵循空气动力学原理,以减少空气阻力和噪音。
车体前端通常采用流线型设计,使得空气可以顺利流过车体,减少阻力;车体侧面通过采用弧形设计、减少凹陷等方式来减小空气噪音。
5. 隔音隔热设计:动车组车体内部进行了隔音隔热设计,以提高乘客的乘坐舒适度。
车体壁板和窗户采用隔音材料和双层玻璃等技术,能够有效地隔离外界噪
音和温度。
通过以上技术原理的应用,动车组车体可以实现轻量化、高强度、稳定性好、能耗低等特点,更好地满足了现代高速铁路的要求。
城市轨道交通车辆构造-车体(PPT41页)

底架中部断面较大并沿其纵向中心线贯通全车的梁称为 中梁,它是底架的骨干。底架两侧边沿的纵向梁称为侧梁, 侧墙固定其上。底架两端部的横向梁称缓冲梁(或称为端梁), 端墙固定其上。在转向架的支承处设有枕梁,为横向梁中断 面最大的梁。在两枕梁之间设有两根以上的大横梁。为了吊 挂设备,铺设地板,底架上还设有若干小横梁和纵向辅助梁, 同时达到了增强底架强度和刚度的目的,其中,中梁和枕梁 承担载荷最大,因而最为重要。
不锈钢
材料
C(max) Si(max) Mn(max)
Ni
Cr
S(max) P(max) N(max)
SUS301L 0.03
1.00
2.00 6.00~8.00 16.00~18.00 0.030 0.045 0.20
SUS304
0.08
1.00
2.00 6.00~10.50 16.00~20.00 0.030 0.045
任务一 车体的结构
2.车体的结构形式 按照车体结构承受载荷的方式不同,车体可分为底架承载 结构、侧墙和底架共同承载结构和整体承载结构三类。
任务一 车体的结构
图2-1 整体承载结构车体
任务一 车体的结构
模块化车体结构
模块化车体设计是将整个车体分为若干个模块,如图 2-2所示,在每个模块的制造过程中完成整车需要的内装、 布管与布线的预组装(见图2-3)并解决相互之间的接口问 题。各模块完成后即可进行整车组装。每一模块的结构部 分本身采用焊接,而各模块之间的总成采用机械连接,如 图2-4所示。
任务一 车体的结构
模块化结构的缺点 ①模块化结构的个别部件(如司机室框架)采用了部分钢材 制造,各部件之间又采用了钢制螺栓连接,所以车体自重 要比全焊结构稍重; ②为保证隔热、隔声性能,组装后,内部需喷涂隔声阻尼 浆和安装玻璃棉或其他隔热、隔声材料; ③车体结构在使用中仅对表面涂装进行必要的维修,在正 常工况下可以满足使用寿命30年的要求。
汽车轻量化设计-车身常用铝合金材料及性能简介

冷成型工艺
热成型工艺
铸造工艺
工程院车身部
二、铝合金零部件工艺路线
冲压工艺成型工艺路线:
第一阶段:板材制备(熔铸-热轧-冷轧-退火-分切)
自动化 程度高
连续静 压,性
能好
轧制 特点
生产效 率高
板材制备
材料利 用率高
工程院车身部
二、铝合金零部件工艺路线
材料状态选择
不可热处理强化合金(1XXX,3XXX,5XXX合金): 轧制/挤压:H态,硬态(强度较高) 轧制/挤压—热处理:O态,软态(硬度较小) 轧制/挤压—热处理—轧制/挤压; H12,H14,H16,H18(硬度适中); 例如5182-O态合金, 工艺路线:热轧-冷轧-360℃X4h退火处理获得5182-O态
工程院车身部
二、铝合金零部件工艺路线
冲压工艺成型工艺路线: 铸棒制备(熔铸-锯切)-挤出(加热铸棒及模具-挤压-锯切-时效)-机加工
工程院车身部
二、铝合金零部件工艺路线
冲压工艺成型工艺路线: 铸棒制备(熔铸-锯切)-挤出(加热铸棒及模具-挤压-锯切-时效)-机加工
整套模具:正模,模垫,模套三部分组成; 正模:工作带,空刀,导流槽,分流孔,分流桥,模芯,焊合室
车身用铝合金及性能简介
目录
1 2 3
铝合金分类及应用 铝合金零件工艺路线
铝合金零件性能
一、铝合金分类及应用
1 铝合金系列
一、铝合金分类及应用
2 铝合金在车身上应用
1XXX:纯铝,例如1050,1060,硬度强度较低,延伸率优良(UTS=70-100MPa; EL=40%); 汽车中应用: 锂电池正极集流体铝箔(电池)
工程院车身部
二、铝合金工艺路线
铝合金鼓形车体结构设计与计算分析

本设计存在两 大技术难点 :其一是据 现有挤压和焊接 工 艺, 设计满足全寿命使用要求 的轻 量化车体结构 ; 其二是设计 满足流线形头罩安装 的功能性司机室骨架结构 。 本文将 就上述 两点分析车体结构 , 并利用有 限元方法对其结构强度和模态振
析 了其在 各 个 工况 下 的 应 力 、 变形 及 模 态 频 率 。 结果 表 明 , 车体 结构 的强 度 和 刚 度 均 满足 相 关技 术 要 求 。 该 关 键 词 : 铁 车辆 地 鼓形车体 有 限元 铝合 金
di 03 6  ̄i n10 - 542 1.5 0 o: . 9 .s. 6 8 5 .0 0 . 1 1 9 s 0 00
Ke r s mer e il d u C o y F M ; l miu y wo d : t v h ce; r m a b o r d ;E A u n m
0 引 言 .
本文介绍 的是一款具有流线外形 , 采用轻量 化设 计 , 合 适
在城市高架线路上运 营的全新B 型铝合金鼓形车体。得益于铝
技术与市场
第 1卷第5 0 0 7 期2 1 年
攮 硪 凌
铝合金鼓形车体 结构 设计 与计算分析
王 苏永章 岳译新 锴
湖南株 0 10 1
摘要 : 文章 介 绍 了一 种B型铝 合 金 鼓 形 车 体 结 构 的轻 量 化 设 计 , 立 了该 车 体 结 构 的 有 限 元模 型 , 依 据 相 关标 准 分 建 并
本轻量化车体为整体承载的铝合金全焊接结构 ,由底架 、 侧墙 、 端墙 、 车顶和司机室骨架结构等部分组成 , 图1 如 所示 。 其 主要技术参数如下 :
b型铝合金地铁车辆车体制造工艺

b型铝合金地铁车辆车体制造工艺B型铝合金地铁车辆车体制造工艺一、引言地铁作为现代城市交通的重要组成部分,对于人们的出行和城市发展有着重要的影响。
B型铝合金地铁车辆以其轻量化、高强度和抗腐蚀等特点,成为地铁车辆制造的重要选择。
本文将介绍B型铝合金地铁车辆车体的制造工艺,以及其在地铁运营中的优势。
二、B型铝合金地铁车辆车体制造工艺1. 材料选择B型铝合金地铁车辆车体的制造首先要选择合适的材料。
常用的铝合金材料有6061和6063两种,它们具有良好的可加工性和强度,能够满足地铁车辆对轻量化和强度要求。
2. 钣金加工车体的制造主要通过钣金加工来实现。
首先,将铝合金板材切割成适当大小的零部件,然后进行弯曲、冲孔、焊接等加工工艺,最后将零部件进行组装。
钣金加工工艺需要高度精确的操作和控制,以确保车体的精度和质量。
3. 焊接工艺焊接是B型铝合金地铁车辆车体制造中的重要一环。
铝合金的焊接需要采用氩弧焊或激光焊等方法,以保证焊缝的质量和强度。
在焊接过程中,还需要注意控制焊接温度和速度,避免产生焊接变形和应力集中。
4. 表面处理车体的表面处理主要包括除油、除氧化和喷涂等工艺。
除油和除氧化可以去除车体表面的污染物和氧化层,保证喷涂的附着力和耐腐蚀性。
喷涂工艺可以采用静电喷涂或涂装等方法,使车体表面呈现出美观且耐用的涂层。
5. 质量检测地铁车辆的制造过程中需要进行严格的质量检测。
包括对材料、零部件和车体整体的尺寸、强度、密封性等性能进行检测。
通过质量检测,可以确保地铁车辆在使用过程中的安全和可靠性。
三、B型铝合金地铁车辆的优势1. 轻量化相比传统的钢铁车体,B型铝合金地铁车辆车体重量更轻,能够降低车辆的能耗和运营成本,同时减少地铁线路的磨损和振动。
2. 高强度B型铝合金具有优异的强度和刚度,能够有效抵抗外部冲击和振动,保证乘客的安全和舒适。
3. 抗腐蚀铝合金具有良好的耐腐蚀性,能够在潮湿和腐蚀环境中长期使用,并减少维护和修复成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Technology Application
技术应用
DCW
169
数字通信世界
2019.02
铁道运输中,对车体的刚度有着很高的要求,现阶段车体材
料采用铝合金。
这样不仅能保障车辆的强度,也符合轻量化设计的要求。
文章介绍一款轻量化设计的B 型铝合金鼓形车体,用有限元模型对设计的结构强度作出了分析。
1 铝合金车体的轻量化设计
铝在地壳中的含量非常高,但强度较低,经过合金化后,强度会得到显著的提升。
同时相比于钢结构,铝的密度较低,因此铝合金在生产中得到了广泛的应用。
铝合金车体设计过程中要注意到车体的刚度问题,为了保障弯曲刚度,选取断面系数要是钢的3倍,设计中要充分考虑到铝合金的断面高和板厚度。
铝合金车体中各个零部件的连接中有焊接和铆接等结构。
其中,焊接的难度较大,操作起来较为复杂,容易产生较大的热应力[1]。
2 车体结构设计
该轻量化车体设计中,是由底架、车顶、侧墙和司机室骨架等构成的,采用铝合金全焊接的结构。
设计中的长度是19300mm ,高度是3687mm ,最大宽度是2800mm ,门间距是4450mm ,车俩定距为12600mm ,车身自重为6.6吨[2]。
2.1 主体结构型材设计
车体主体结构占总质量的80%,设计中采用了大断面中空型材,包括了车顶边梁、门立柱和底架地板等。
车体焊接使用MIG 焊,铝合金厚度的减小,会增加其焊接的难度。
在该设计中,为了保障焊接的安全程度,主体结构中保障了型材的厚度。
通常状况下,车顶边梁中用到大断面、厚度较大的筋板时,会造成车顶重量增大。
该设计中为了防止重量过大,对筋板的数量进行了科学的调控。
结构设计中对空调梁进行了单独设计,焊在长梁上,在一定程度上节省了材料。
侧墙板型材断面用三角形截面,内筋板2到3mm ,外壁为3到4mm ,保障了侧墙平面程度。
底架边梁内筋板厚度是3到4mm ,外闭厚度在5mm 左右,对底架的结构强度作出保障。
长地板中分布较多的U 形槽,增加长地板的设备悬挂能力[3]。
端墙设计中采用整体的型材,以满足其稳定性要求。
2.2 司机室结构设计
司机室骨架结构要有一定的强度和空间,并且要匹配头罩,留出安装空间。
该设计中采用到流线形,对主横梁和支撑立柱进行设计时,增加了两者的焊接长度,预留出头罩粘接区域。
焊接的区域避开门立柱的折弯区。
司机室内,主横梁发生纵向挤压时,会引起门立柱发生变形。
为了防止门立柱出现变形的状况,就要对来自主横梁的纵向力进行分散。
设计中将主横梁和纵梁相接,使得纵向力传递到车顶,在纵梁弯曲的前段设计三根弯横梁,使得向门立柱的上方进行传力。
弯横梁设计中,掌握好弯曲半径、撑板和U 型材截面[4]。
3 有限元模型
该设计中,按照车体型材和板材的厚度,利用仿真软件,将
三维模型简化成几何中面,离散为网格模型。
模型中有196687
个节点,壳单元有250688个。
其中包括了245329个四边形壳单元,5357个三角形壳单元和2个刚体单元[5]。
根据相关的标砖,对铝合金车体的结构强度进行考核。
考核工况包括AWO 空载工况、AW3超载工况,客室站立区域每平方米站9人、AW3超载空载工况下+800kN 压缩力、带点转向架四点驾车,单个转向架5.75吨、牵引梁三点驾车,垂向AWO ,一顶车点放开垂向约束、AWO 空载工况下+纵向300kN 的前窗压力和AW 空载工况下+纵向300kN 后端墙压力等。
通过对工况结果进行分析,发现在AW3超载工况下,底架边梁的最大垂向位移是7.3mm 。
按照相关的《地铁车辆通用技术条件》规定,在最大的垂直载荷的作用下,车体静挠度不超过两转向架支撑点距离的1%‰,该设计中的两转向架支撑点距离是12600mm ,说明该设计车体符合刚度要求。
按照设计工况出现概率和重要度对安全系数进行判断。
当车体运营乘客的时候,安全
系数就较高,为1.3,
复轨架车工况等的安全系数相对较低,为1.1。
但是因为材料以及制造工艺的差别,算出的结果和相对的安全系数有一定裕量[6]。
4 模态分析
利用模态分析能计算铝合金车体的固有频率,确定车体的振型。
两者是承受动态载荷结构设计的主要参数。
模态能对结构整体或者局部的刚度作出判断。
为了使车体刚度得到提升,车辆符合刚度要求,减小因为外界激振产生的不良动态响应。
模态分析中用质量块模拟设备重量,加载在车体,使用拉格朗日算法。
在进行计算时分为空车自由模态和整备状态自由模态。
一般状况下,转向架的振动频率在4到6Hz 之间。
该设计的铝合金车体整备状态下一阶垂向弯曲频率是9.82Hz ,是转向架振动频率的1.6倍,和转向架不会发生激振现象,符合相关的设计要求。
综上所述,文章中设计了B 型铝合金车体,通过有限元模型对还车体作出了分析,结果说明该车体的强度、刚度等方面都符合相关的要求。
该车体的轻量化设计和司机室的骨架结构为B 型地铁鼓形铝合金车体的设计作出了参考。
参考文献
[1] 罗宝,岳译新,刘永强,许晶晶.B 型地铁轻量化不锈钢车体结构设计[J].技术与市场,2017,24(12):6-7+10.
[2] 王国军,王丽.A 型地铁铝合金车体轻量化设计及结构优化设计研究[J].技术与市场,2017,24(12):14-16+19.
[3] 黄洋,刘宁,王富宇.地铁车辆蹬车梯优化设计[J].电力机车与城轨车辆,2017,40(03):48-49+56.
[4] 孔凡昌,王洪奇,王永刚,何秀全,吴宇.地铁车辆自动折叠座椅坐垫轻量化研究[J].价值工程,2017,36(13):75-77.
[5] 夏健博,应博.基于有限元的A 型地铁拖车轻量化研究[J].佳木斯大学学报(自然科学版),2016,34(04):532-534.
[6] 陈晶晶,柳晓峰.某A 型地铁车体结构轻量化研究[J].电力机车与城轨车辆,2015,38(06):9-11.
地铁铝合金车体轻量化设计与结构设计
曹志浩
(青岛中车电气设备有限公司,青岛 266000)
摘要:随着人们生活水平的提升,对出行安全也有了更高的要求。
地铁作为人们常用的交通工具之一,安全性受到人们的广泛关注。
文章简要介绍了一种B 型铝合金车体的轻量化设计,对车体结构建立有限元模型,按照标准对该铝合金车体在多个工况下的应力、变形等作出分析。
通过实践证明,该地铁铝合金车体设计符合相关的要求。
关键词:地铁;铝合金车体;轻量化设计doi :10.3969/J.ISSN.1672-7274.2019.02.129
中图分类号:U270.2 文献标示码:A 文章编码:1672-7274(2019)02-0169-01。